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INTRODUCTION N\

Challenges

Additive manufacturing \
« Layer Formation: A thin layer of metal powder is evenly spread - Ensuring Print Consistency: Guaranteeing that
across the build platform, creating a uniform layer of material. the 3D printing process yields consistent results
- Selective Melting: A high-powered laser selectively melts and fuses across multiple builds
the metal powder together, following a predetermined pattern - Defect Detection and Identification: Identifying
generated from a 3D CAD model. and characterizing defects such as pores and other
- Layer-by-Layer Build: Steps 1-2 are repeated, with the build platform - In-Situ Data Interpretation: Developing effective
lowering and a new layer of powder being applied, until the entire methods for interpreting data generated during
part is built layer by layer, resulting in a fully dense and functional the printing process to detect and identify defects
component. '
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OBJECTIVES

* Intelligently fuse multi-modal in-situ

monitoring data. Default Representation

"Good” Semantic Representation
* Minimize the labeling burden no humans. ¢ _ ‘, N

* Limit a-prior assumptions
* Generate “good” representations

* Use unsupervised machine learning ; Deep
§ ' Neural |~
* Why? § network
* Uncover hidden fingerprints in our data. / . .

* Generate representations for down stream
tasks

A good representation is one that makes a
subsequent learning task easier. The choice of
representation will usually depend on the choice
of the subsequent learning task [Bengio,
Goodfellow ..] How to generate this neural network?




Learning transferable visual models from natural language supervision

A Radford, JW Kim, C Hallacy, A Ramesh, G Goh, S Agarwal, G Sastry, A Askell, P Mishkin...
M E I H 0 D International conference on machine learning, 2021 - proceedings.mir.press
Abstract
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined
object categories. This restricted form of supervision limits their generality and usability since

additional labeled data is needed to specify any other visual concept. Learning directly from
raw text about images is a promising alternative which leverages a much broader source of

¢ Inspired by CLI P (Contra Stive La nguage_l mage supervision. We demonstrate that the simple pre-training task of predicting which caption
Pre_t ra i n I ng) Aanas with which imane i= an efficient and =ralahle way ta learn SOTA imane renrecentatinns

SHOW MORE ~

77 Save DY Cite Cited by 12391 Related articles All 17 versions 9%

* One of the most cited multi-modal ML papers ever
e CLIP trained encoders for text and images
* Contrastive loss (no labels needed, just tuples)

* Generates ‘good representations

(1) Contrastive pre-training (2) Create dataset classifier from label text

ﬁ DAQ Latent Space
Y DAQ

Pepper the DAQ Latent Space )
* Adapting for manufacturing-specific sensor Qk’) V11 -]
Lln | . s

* Challenges

| ]

modalities n Ty |
*  Will it even work? é;—> R R R ) Use for zero-shot prediction v v \
P P S T ST G0 I O I S R O
* What encoder architectures will work? .
X6 T LT T T AR MR 1T
1 111 112 17z I''N
Ly Iy T | IeTy [T | . |IyTy Basler Latent Space




Optical Image and Crop of Region 4

Galvo Data for Region Identification Original Input Data

Label number 4

Original Input Data

Bounding Box Crop for Label Region 4

Bounding Boxs For Each Region

DATASETS

* In-situ
* Generate data tuples from in-situ
Laser Powder Bed Fusion (LPBF)

process data Dataset Tuple (Image, audio)

Audio and Matching Group Label

Multiple modalities: imag : ,
u I e m O a I I e S * I m a e S' Galvo Position Colored by Index = \ 7
. - = 300000 |
audio, DAQ signals y : . oot
10 250000 B \ 2 5 5
3 z
§ o 200000 -g, s A \ 3 °
g 2 150000 S" : % 2
2 . S
3 -05 3 ¥
100000 é -6
1.0 2 <
x5 o 1 — ! -100 N
=20 0 o 50000 100000 150000 200000 2 00 |
=20 -15 =10 -05 00 05 10 15 20 Index (while laser is on) 2
0175 Galvo X Position 0 5000 10000 15000 20000 2%000 30000
. Group 4 is 8th Ii
0125 This is audio signal region for label 4
0.100 8
0.075
0.050
0.025
0.000

' * Lattice
phy 1)), Post build information
Optical, height maps, forces displacement curves.

05

04

03

0.2

01

00




DATASET VARRIATION

* 4 builds

*  Cubes nominal

*  Cubes with 6 off-nominal

*  Cylinders nominal

¢ Cylinders with 6 off nominal

Laser Laser Speed
Power (W) (mm/s)
1 107 1400
3 119 1400
4 102 1400
6 124 1400
7, 113 1330
9 113 1470
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Variety of print settings
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MODEL ARCHITECTURE FOR IN-SITU

X
. . 2
Whisper (Audio encoder)
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MODEL ARCHITECTURE FOR LATTICES MLP MLP ResBlock N\

. — l !
Resnet like MLP .
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Lattice tuple with augmentation

TRAINING PROCESS

* Contrastive loss function

* Matching tuples pushed together

e Dissimilar tuples pushed apart

* Accuracy = the most similar vector from the
other modality is the match

* Data augmentation In-situ CLIP training metrics

e Standard augmentation methods for Images

N AUdiO. Add nOise Training and Validation Metrics

Accuracy Loss

- 0.00010 401 —e— Taining Loss | [ 0.00010

—m— Validation Loss

* Force-disp curves. Noise and shift curve by N idxs 1

—&— Training Accuracy
r 0.00008

—— Validation Accuracy 3.6 4 r 0.00008

—»— Learning Rate

* Optimization details

F 0.00006

o
[=]
L=
[=]
(=]
o

Loss

e One cycle annealing Ir
%

Learning Rate
Learning Rate

r 0.00004 r 0.00004

e Limited hyper parameter turning since it
was working so well

—%— Learning Rate

r 0.00002 r 0.00002

r 0.00000 r 0.00000

T T T T T T T T T T T T T T T T
0.0 2.5 5.0 1.5 10.0 12,5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12,5 15.0 175
Epoch Epoch

Loss goes down consistent
Accuracy maxes out at 100% for training and valuation
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RESULTS IN-SITU

Learned latent space
Umap for dim
reduction

Each point = data tuple
« Image, audio, DAQ

9 groups = 9 locations

Blue

From off-nominal
build
« 3 are still nominal

Red = nominal build
Cubes have more
process variation than
cylinders.

Items with more variation in the process parameters are further apart in latent space.
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Why? The signals are some how different AND the model learned to discriminate
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r cyliners: nominal

r cylinders: off nomina
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RESULTS: LATTICE D
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e Compaction

Lattice vectors lie on a 2D manifold
The points have a relatively smooth transition (therefore clustering has little meaning)
The ‘directions’ on the manifold have physical meaning.

12




CHALLENGES AND LIMITATIONS

* |n-situ

Data quality and quantity

Angle of camera results in close and far items being out
of focus

Microphone has limitations in quality and quantity
More data would be helpful
More of the same to help further confirm results
Diverse data. Our builds are ‘simple’
(do overhangs ‘sound’ different?)
Photodiode data would be helpful.
Often data tuples are often almost identical

« Lattices

Limited dataset size
Interpretation of Umap 2D output is hard

13



CONCLUSION h
N\
« Used multimodal data to generate \
meanlnng| representathnS Of the data Contrastive Pretraining Inference with encoders
- Used unlabeled data and contrastive loss ot N
- Correlated expensive (images) with cheap iy wka %
measurement (audio) N # | r‘ RN —
- Adapted CLIP to work on manufacturing - A
data e
- Extended CLIP beyond 2 modalities e > B
« Encoder architecture agnostic. B I
« Used a variety of encoders (Resnet18, 1 - -
Whisper,LSTM, MLP) g SRS

- Efficient and stable training -> The
technique scales easily to bigger datasets

- The generated representations can be used
for down stream tasks
* Process consistency checks

«  Physical insight (hidden fingerprints)

14
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MULTI-SCALE LSTM

y = f(x) = W, - ReLU(W; - concat([hi]gé\:{é}) + b)) + b,

where:
h; = LSTM;(x[::2']),i € {0,1,...,N — 1}

and x is the input sequence, N is the number of LSTM heads , h; is the final hidden state of the i-th LSTM
head, x[::2!] denotes the input sequence subsampled by a factor of 2!, LSTM; ()1, represents the last
output of the j-th LSTM , W, W, are weight matrices and b;, b, are bias vectors of the fully connected

layers, concat[-] represents the concatenation operation.

18




CLIP LOSS

For a batch of N image-audio pairs, the loss function can be expressed as:

N Sim(xiryi) Sim@ir'x:’)
1 exp (—r ) exp ( p
L = N E log - ( ) + log . ( )
sim(x;, y; sim(y;, x;
i1 N exp (lej) N exp (*)

T
. us v, . _ . .
Where sim(u, v) = Tl is the cosine similarity between vectors u and v, tis a temperature

parameter that controls the softmax distribution, and x; and y; are the i-th image and audio inputs,

respectively.

19



‘// / \ \‘
: : 1 : I Ta = [ = 2 ol = 11
= Given a pretrained NN, and ‘'nominal’ images X =""B:8 PSmm' s me OEE BsmHOR \
. . . EEEET CEEEE R HopEsE RERNSE
= Observe the 2D convolutional activation maps / gEEng, NEENSE CECEEE GEmusE
Bt S  HE mEHIED EENNEE NsESED
caused by the nominal images X BEN-ON gsiiem | NESEAE BeReE.
= Summarize the 2D activation map using some f, summarize conv
function f, (e.g. min, max, avg) — activation map to
= Do for all ‘training’ images. Calculate the average single number.
and std conv filter ‘activation’
bix = mean N
¢; » = standard deviation__ | — i, offsfet -5 Resnet 151
= ¢,z and ¢, , are then a fingerprint’ of the SIS
nominal case 0-

T T T T T
0 10000 20000 30000 40000 50000
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ADDITIVE MANUFACTURING
IN-PROCESS MONITORING + FADS

mEGL

Setup:

« Some layers were printed with
Question: Does this print look like all the ones before? incorrect process settings.
Answer: We can identify any layers that looked unusual using FADS. Resylt:

« We identified all bad layers.
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