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INTRODUCTION

Additive manufacturing

• Layer Formation: A thin layer of metal powder is evenly spread 
across the build platform, creating a uniform layer of material. 

• Selective Melting: A high-powered laser selectively melts and fuses 
the metal powder together, following a predetermined pattern 
generated from a 3D CAD model. 

• Layer-by-Layer Build: Steps 1-2 are repeated, with the build platform 
lowering and a new layer of powder being applied, until the entire 
part is built layer by layer, resulting in a fully dense and functional 
component.
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Challenges

• Ensuring Print Consistency: Guaranteeing that 
the 3D printing process yields consistent results 
across multiple builds

• Defect Detection and Identification: Identifying 
and characterizing defects such as pores and other 

• In-Situ Data Interpretation: Developing effective 
methods for interpreting data generated during 
the printing process to detect and identify defects.



OBJECTIVES

• Intelligently fuse multi-modal in-situ 
monitoring data. 

• Minimize the labeling burden no humans. 

• Limit a-prior assumptions 

• Generate “good” representations

• Use unsupervised machine learning

• Why? 

• Uncover hidden fingerprints in our data. 

• Generate representations for down stream 
tasks
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A good representation is one that makes a 
subsequent learning task easier. The choice of 
representation will usually depend on the choice 
of the subsequent learning task [Bengio, 
Goodfellow ..]

Default Representation

Deep 
Neural 

network

“Good” Semantic Representation

How to generate this neural network?



METHOD

• Inspired by CLIP (Contrastive Language-Image 

Pre-training)

• One of the most cited multi-modal ML papers ever

• CLIP trained encoders for text and images

• Contrastive loss (no labels needed, just tuples)

• Generates ‘good representations

• Challenges

• Adapting for manufacturing-specific sensor 

modalities

• Will it even work?

• What encoder architectures will work?
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DATASETS

• In-situ 
• Generate data tuples from in-situ 

Laser Powder Bed Fusion (LPBF) 
process data

• Multiple modalities: images, 
audio, DAQ signals
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• Lattice
Post build information
Optical, height maps, forces displacement curves. 



DATASET VARRIATION 

• 4 builds

• Cubes nominal

• Cubes with 6 off-nominal

• Cylinders nominal

• Cylinders with 6 off nominal

• Gyroids and Octets

• Variety of print settings
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Normalized force-disp curves
Gyroids and Octets



MODEL ARCHITECTURE FOR IN-SITU
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Resnet18

Whisper (Audio encoder)

DAQ
encoder

wikipedia

Multi-resolution LSTM



MODEL ARCHITECTURE FOR LATTICES
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TRAINING PROCESS

• Contrastive loss function

• Matching tuples pushed together

• Dissimilar tuples pushed apart

• Accuracy = the most similar vector from the 
other modality is the match

• Data augmentation

• Standard augmentation methods for Images

• Audio. Add noise

• Force-disp curves. Noise and shift curve by N idxs

• Optimization details

• One cycle annealing lr

• Limited hyper parameter turning since it 
was working so well
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In-situ CLIP training metrics

Loss goes down consistent
Accuracy maxes out at 100% for training and valuation

Lattice tuple with augmentation



RESULTS IN-SITU

• Learned latent space
• Umap for dim 

reduction
• Each point = data tuple

• Image, audio, DAQ

• 9 groups = 9 locations
• Blue 

• From off-nominal 
build

• 3 are still nominal

• Red = nominal build

• Cubes have more 
process variation than 
cylinders. 
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Items with more variation in the process parameters are further apart in latent space. 
Why? The signals are some how different AND the model learned to discriminate



RESULTS: LATTICE DATASET

12

Lattice vectors lie on a 2D manifold
The points have a relatively smooth transition (therefore clustering has little meaning)
The ‘directions’ on the manifold have physical meaning. 



CHALLENGES AND LIMITATIONS

• In-situ

• Data quality and quantity

• Angle of camera results in close and far items being out 
of focus

• Microphone has limitations in quality  and quantity

• More data would be helpful

• More of the same to help further confirm results

• Diverse data. Our builds are ‘simple’

• (do overhangs ‘sound’ different?)

• Photodiode data would be helpful.

• Often data tuples are often almost identical

• Lattices

• Limited dataset size

• Interpretation of Umap 2D output is hard
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Vs.



CONCLUSION
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• Used multimodal data to generate 
meaningful representations of the data

• Used unlabeled data and contrastive loss

• Correlated expensive (images) with cheap 
measurement (audio) 

• Adapted CLIP to work on manufacturing 
data

• Extended CLIP beyond 2 modalities

• Encoder architecture agnostic. 
• Used a variety of encoders (Resnet18, 

Whisper,LSTM, MLP)

• Efficient and stable training -> The 
technique scales easily to bigger datasets

• The generated representations can be used 
for down stream tasks
• Process consistency checks

• Physical insight (hidden fingerprints)



Q&A / THANK 
YOU 
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BACKUP



DAQ LATENT SPACE -> UMAP



MULTI-SCALE LSTM
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CLIP LOSS
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FADS

▪ Given a pretrained NN, and ‘nominal’ images X

▪ Observe the 2D convolutional activation maps 
caused by the nominal images X

▪ Summarize the 2D activation map using some 
function 𝑓𝑎 (e.g. min, max, avg)

▪ Do for all ‘training’ images. Calculate the average 
and std conv filter ‘activation’

ϕi,തx = 𝑚𝑒𝑎𝑛
𝜙𝑖,𝜎 = standard deviation

▪ 𝜙𝑖, ҧ𝑥 and 𝜙𝑖,𝜎 are then a ‘fingerprint’ of the 
nominal case

Conv filter #

Resnet 151

5 = 𝑓𝑎

fa summarize conv 
activation map to 

single number. 



ADDITIVE MANUFACTURING
IN-PROCESS MONITORING + FADS

Question: Does this print look like all the ones before?
Answer: We can identify any layers that looked unusual using FADS.

Setup:
• Some layers were printed with 

incorrect process settings. 
Result:
• We identified all bad layers. 
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