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1. General 
Nominally pure oxide-free coppers appear to be relatively unaffected by high-pressure hydrogen 
gas. However, mechanical testing of hydrogen-saturated copper has not been carefully 
investigated and it is unclear whether long-time exposure to high-pressure hydrogen gas will 
result in degradation of mechanical properties. The effect of high-pressure hydrogen gas on 
metals has been quantified in the literature by saturating metals with hydrogen at elevated 
temperature in high-pressure hydrogen gas [1], a process called thermal precharging. Thermal 
precharging of copper, however, must be considered carefully. Copper anneals at low 
temperatures compared to steels, and the permeability of hydrogen in copper is less than most 
steels; therefore, precharging conditions appropriate for steels may not be appropriate for copper. 
The diffusivity and solubility of hydrogen in copper is very low, thus equilibrium hydrogen 
saturation in copper takes exceptionally long times as in stainless steels. 
 
Copper with oxygen inclusions is embrittled by hydrogen [2-4]. Hydrogen reduces copper oxide 
forming water but can also react with oxygen in solution. In particular, oxides at grain 
boundaries are believed to promote intergranular failure and loss of ductility. The process of 
hydrogen embrittlement is slow at ambient temperatures as it requires diffusion of the active 
species, namely oxygen and hydrogen [2-4].  
 
The available data combined with the observation that pure coppers are relatively low strength 
seem to indicate that copper is not strongly affected by hydrogen, provided that the copper is 
oxide-free. 
 
1.1 Composition 
There are many varieties of copper, each with compositional requirements designed to meet 
specific applications. OFHC copper (oxygen-free high-conductivity) is generically employed 
when oxygen inclusions cannot be tolerated. Hydrogen effects on alloys containing other trace 
elements, such as phosphorus, have not been reported in the literature with respect to gaseous 
hydrogen service. 
 
 
2. Permeability, Diffusivity and Solubility  
The permeability of hydrogen through copper (Figure 2.1) is very low, even lower than austenitic 
stainless steel. The low permeability is due to the combination of low diffusivity for hydrogen 
(Figure 2.2) and low solubility of hydrogen (Figure 2.3); permeability is the product of solubility 
and diffusivity. The diffusivity of hydrogen in copper, however, is not as low as in austenitic 
stainless steels. Table 2.1 summarizes the information plotted in Figures 2.1, 2.2 and 2.3. 
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3. Mechanical Properties: Effects of Gaseous Hydrogen 
 
3.1 Tensile properties 
 
3.1.1 Smooth tensile properties   
The data for OFHC copper is not entirely consistent. Walter and Chandler report essentially no 
effect of hydrogen on cold drawn OFHC copper (Table 3.1.1.1) [5], while Vennett and Ansell 
report as much as 16% loss in ultimate strength in material tested in 69 MPa hydrogen gas at 
constant crosshead displacement of 8.5 x 10-3 mm/s (0.02 in/min) [6]. In the latter report, the 
fracture surface was observed to be along a plane at 45 degrees from the loading axis in 69 MPa 
hydrogen compared to the double cup fracture observed when tested in air. In addition, Vennett 
and Ansell observed inclusions in the OFHC copper used in their study [6], perhaps indicating 
that these hydrogen effects could be attributed to oxides or other second phase inclusions.  
 
Louthan et al. report the same mechanical properties (Table 3.1.1.1) for Cu with internal 
hydrogen [7] as for OFHC Cu tested in external hydrogen [1]; although this is presumably an 
error, the properties were unchanged by internal or external hydrogen. In the latter study, 
significant reductions in strength were reported for boron deoxidized copper with internal 
hydrogen [1]. These strength reductions, however, were accompanied by slight improvements in 
ductility, which implies that these reductions may have been due to annealing at the precharging 
temperature. Louthan also reports a reduction in strength for the boron-deoxidized copper when 
tested in high-pressure hydrogen gas; the source of this degradation is unclear, but remains 
suspect considering the ambiguities associated with data from Louthan et al. 
 
 
3.1.2. Notched tensile properties  
Notched tensile properties show the same trends as smooth tensile properties. High-pressure 
gaseous hydrogen is reported to have no effect on notched tensile properties of OFHC copper 
(Table 3.1.2.1) [5]; at least for copper that showed no degradation in properties in smooth-bar 
tensile tests. Details of notched tensile properties are not reported for a different heat of OFHC 
copper used by Vennett and Ansell, however, a loss of ultimate strength was observed in 
notched-bar tensile tests as in smooth-bar tensile tests (tested in high-pressure hydrogen gas) [6]. 
 
3.2 Fracture mechanics  
No known published data in hydrogen gas.  
 
3.3 Fatigue 
No known published data in hydrogen gas. 
 
3.4 Creep 
No known published data in hydrogen gas. 
 
3.5 Impact 
No known published data in hydrogen gas. 
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3.6 Disk rupture tests 
Hydrogen is reported to have no effect on copper in disk rupture tests [8]. There are no reports of 
extended hydrogen exposures prior to disk rupture tests.  
 
 
4. Metallurgical considerations 
Despite the paucity of data for nominally pure coppers in the presence of high-pressure hydrogen 
gas, it appears that oxide inclusions are the most detrimental features for resistance to hydrogen-
assisted fracture. The presence of oxide inclusions may explain the change in fracture 
morphology observed in tensile testing of copper in high-pressure air compared to high-pressure 
hydrogen gas [6]. 
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Table 2.1. Permeability, diffusivity and solubility relationships for copper.  
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Pure Cu 623–773 0.15–
0.2 263 x 10-4 52.3 — — — — [9] 

OFHC Cu 623–973 0.1 4.46 x 10-4 75.3 — — — — [10] 

5.26 x 10-4 78.7 11.5 x 10-6 40.8 458 37.9 Single 
crystal Cu 700–925 0.013–

0.093 3.31 x 10-4 (D) 77.8 (D) 6.2 x 10-6 (D) 37.8 (D) 534 (D) 40.0 (D) 
[11] 

— — 11.3 x 10-6 38.9 — — 

— — 7.30 x 10-6 (D) 36.8 (D) — — Single 
crystal Cu 723–1198 — 

— — 6.12 x 10-6 (T) 36.5 (T) — — 

[12] 

Several low 
oxygen 

coppers † 
350–750 0.1–0.5 0.821 x 10-4 71.7 8.6 x 10-6  52.4 9.5 19.3 [3, 

4] 

OFHC Cu 493–713 0.0013
–0.13 8.40 x 10-4 77.4 1.06 x 10-6 38.5 792 38.9 [13] 

Cu 500–1200 0.001–
0.1 0.366 x 10-4 60.5 0.226 x 10-6 29.3 162 31.2 [14] 

(D) and (T) denote values as measured for deuterium and tritium respectively. 
† Data from Refs. [3, 4] are determined for deuterium: permeability and diffusivity have been corrected here to give permeability 
and diffusivity of hydrogen (by multiplying by the square root of the mass ratio: √2); solubility is assumed to be independent of 
isotope. Diffusivity is estimated from Figure 6 in Refs. [3, 4]; solubility is calculated 

! 

S =" D( ). 
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Table 3.1.1.1. Smooth tensile properties of copper at room temperature: measured in external 
hydrogen gas.  

Material Thermal 
precharging 

Test 
environment 

Strain 
rate 
(s-1) 

Sy 
(MPa) 

Su 
(MPa) 

Elu 
(%) 

Elt 
(%) 

RA 
(%) Ref. 

None 69 MPa He 269 290 — 20 94 Cold 
drawn, 
OFHC Cu None 69 MPa H2 

— 
— 283 — 20 94 

[5, 
15] 

None Air 96 234 — 44 71 
Cu 

(1) Air 
— 

96 228 — 45 71 
[7] 

None Air 96.5 234 — 44 71 
OFHC Cu 

None 69 MPa H2 
— 

96.5 228 — 45 71 
[1] 

None Air 96.5 234 — 40 92 
(2) Air 55.2 200 — 49 92 

None 69 MPa H2 68.9 214 — 46 94 

Boron 
deoxidized 
Cu 

(2) 69 MPa H2 

— 

41.4 200 — 51 96 

[1] 

(1) 69 MPa hydrogen, 428 K, 720 h: ~0.03 wppm hydrogen (<1 appm) 
(2) 300 MPa hydrogen, 473 K, 1344 h 

 
 
 
Table 3.1.2.1. Notch tensile properties of copper at room temperature: measured in external 
hydrogen gas. 

Material Specimen Thermal 
precharging 

Test 
environment 

Displ 
rate 

(mm/s) 

Sy † 
(MPa) 

σs 
(MPa) 

RA 
(%) Ref. 

None 69MPa He  269 600 20 Cold 
drawn, 
OFHC Cu 

(a) 
Kt ≈ 8.4 None 69MPa H2 4 x10-4 — 593 24 

[5, 
15] 

Kt = stress concentration factor  
† yield strength of smooth tensile specimen 
(a) V-notched specimen: 60˚ included angle; minimum diameter = 3.81 mm; maximum 

diameter = 7.77 mm; notch root radius = 0.024 mm.  
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Figure 2.1. Permeability relationships (Table 2.1) for copper: Rudd [9]; Gorman [10]; 
Eichenauer [11]; Caskey [3, 4]; Begeal [13]; Tanabe [14]. Deuterium (D) data have been 
corrected to hydrogen (by multiplying by the square root of the mass ratio: √2).  

 
Figure 2.2. Diffusivity relationships (Table 2.1) for copper: Eichenauer [11]; Katz [12]; 
Caskey [3, 4]; Begeal [13]; Tanabe [14]. Deuterium (D) and tritium (T) data have been 
corrected to hydrogen (by multiplying by the square root of the mass ratio: √2 and √3 
respectively). 
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Figure 2.3. Solubility relationships (Table 2.1) for copper: Eichenauer [11]; Caskey [3, 4]; 
Begeal [13]; Tanabe [14]. Solubility is assumed to be independent of isotope effect, thus 
solubility of deuterium is nominally the same as for hydrogen.  

 


