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1. General 
9Ni-4Co is a high strength, tempered martensitic steel used primarily in the aerospace industry 
[1, 2]. Screening tests indicate that this alloy is not appropriate for use in gaseous hydrogen 
environments [3-5]. Fatigue data indicate that gaseous additives can reduce the embrittling 
effects of gaseous hydrogen on 9Ni-4Co [6]; however, further study is required to determine the 
viability and practicality of such an approach.  
 
1.1 Composition 
Table 1.1.1 lists the compositional range for 9Ni-4Co steel.  
 
1.2 Other Designations  
HP9-4-20, UNS K91472; similar alloys: HP9-4-30 (UNS K91283), HP9-4-25 (UNS91122) 
 
2. Permeability and Solubility  
Permeability of hydrogen in 9Ni-4Co is reported to be similar to pure iron and 4130 steel [7, 8]. 
The temperature dependence of permeability is reported in Ref. [7] as  
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3. Mechanical Properties: Effects of Gaseous Hydrogen 
 
3.1 Tensile properties 
 
3.1.1 Smooth tensile properties 
Walter, Chandler and co-workers [3-5] have categorized 9Ni-4Co steel as extremely embrittled 
in the presence of hydrogen gas at room temperature. Tensile properties are given in Table 
3.1.1.1. 
 
3.1.2. Notched tensile properties  
Notched tensile properties of 9Ni-4Co in 69 MPa gaseous hydrogen, Table 3.1.2.1, show that 
this steel has almost no ductility (RA = 0.2%), and its sharp-notch strength is reduced by a factor 
of four compared to testing in 69 MPa gaseous helium.  
 
3.2 Fracture mechanics  
No known published data in gaseous hydrogen. 
 
3.3 Fatigue 
Fatigue crack growth rates were found to be significantly greater in 0.013 MPa gaseous 
hydrogen compared to vacuum (10-6 Pa); measurements are reported at temperatures between 
225 and 375 K and cyclic stress intensity in the range of 10 to 50 MPa m1/2 [6]. The fatigue crack 
growth rate in this low pressure of hydrogen is a maximum at about 273K and shows the largest 
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difference compared to vacuum at stress intensity near 25 MPa m1/2. At room temperature and a 
stress intensity of 24.7 MPa m1/2 the fatigue crack growth rate is about 5x10-6 m/cycle in 
hydrogen and 8x10-8 m/cycle in vacuum. Equal partial pressures (0.013 MPa) of oxygen (O2), 
carbon monoxide (CO) or nitrous oxide (N2O) added to gaseous hydrogen reduced the fatigue 
crack growth rates to values associated with those gases alone, about twice the rate in vacuum 
[6].  
 
3.4 Creep 
No known published data in gaseous hydrogen. 
 
 
4. Fabrication 
 
Special considerations for hydrogen service have not been identified since this alloy is not 
recommended for hydrogen service.  
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Table 1.1.1. Compositional ranges of 9Ni-4Co according to UNS K91472.   

Heat Fe Ni Co Cr Mn Mo Si C  Ref. 

UNS 
K91472 Bal 8.50 

9.50 
4.25 
4.75 

0.65 
0.85 

0.20 
0.40 

0.90 
1.10 

0.20 
max 

0.17 
0.23 

0.010 max S; 
0.010 max P; 
0.35 max Cu; 
0.06 < V < 0.12 

[9] 

W69 Bal 9.10 4.45 0.78 0.27 1.01 0.02 0.17 0.005 P; 0.005 S; 
0.78 V [3] 

 
 
Table 3.1.1.1. Tensile properties of 9Ni-4Co steel tested at room temperature in high-pressure 
helium and hydrogen gas.  

Material Thermal 
precharging 

Test 
environment 

Strain 
rate 
(s-1) 

Sy 
(MPa) 

Su 
(MPa) 

Elu 
(%) 

Elt 
(%) 

RA 
(%) Ref. 

None 69MPa He 1289 1372 --- 15 67 
W69† 

None 69MPa H2 
0.67 
x10-3 --- 1207 --- 0.5 15 

[3, 5] 

† annealed at 843˚C (1550˚F) for 1 hour, oil quenched; double tempered at 538˚C (1000˚F)  
for 2 hours 

 
 
Table 3.1.2.1. Notched tensile properties of 9Ni-4Co steel tested in high-pressure helium and 
hydrogen  gas at room temperature.  

Material Specimen Thermal 
precharging 

Test 
environment 

Sy * 
(MPa) 

σs 
(MPa) 

RA 
(%) Ref. 

None 69MPa He 1289 2668 6.3 
W69† (1) 

None 69MPa H2 --- 614 0.2 
[3, 5] 

† annealed at 843˚C (1550˚F) for 1 hour, oil quenched; double tempered at 538˚C (1000˚F)  
for 2 hours  

* yield strength (0.2% offset) of smooth tensile bar 
(1) stress concentration factor (Kt) = 8.4; notch geometry = 60˚ included angle; minimum 

diameter = 3.81 mm (0.15 inch); maximum diameter = 7.77 mm (0.306 inch); notch root 
radius = 0.024 mm (0.00095 inch); displacement rate ≈ 4 x10-4 mm/s. 

 


