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Abstract
The relationship between ensemble classifier perfor-
mance and the diversity of the predictions made by en-
semble base classifiers is explored in the context of het-
erogeneous ensemble classifiers. Specifically, numerical
studies indicate that heterogeneous ensembles can be
generated from base classifiers of homogeneous ensem-
ble classifiers that are both significantly more accurate
and diverse than the base classifiers. Results for exper-
iments using several standard diversity measures on a
variety of binary and multiclass classification problems
are presented to illustrate the improved performance.

Keywords- classification, heterogeneous ensembles, di-
versity

1 Introduction

The problem of data classification, or data labeling,
arises in a wide variety of applications. Examples in-
clude detecting spam e-mail messages based on the con-
tent of the messages (document classification), labeling
cells and tumors as malignant or benign based on the
context of MRI scan data (image classification), and
identification of individuals based on fingerprints, facial
features, and iris patterns (biometric identification). In
all of these examples, the goal is to predict a discrete
label (e.g., “spam” versus “not spam”) for a particular
data instance (e.g., a particular e-mail message) based
on the attributes of that instance.

More formally, classification is the task of learning a
function, f , that maps a set of data instance attributes,
x = 〈a1(x), . . . , am(x)〉, to one of several predefined
class labels from Y = {c1, . . . , ck}. The function f is
often called a classifier or classifier model, but in this
paper we will use the term classifier to designate classi-
fication functions and the term classifier model will only
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be used to describe the structure of such functions. The
set of data instances used to learn, or train, a classifier
is called the training set; i.e., {(x1, y1), . . . , (xn, yn)},
where n is the number of instances, xi ∈ Rm is a vector
of attributes, or features, for data instance i, and yi ∈ Y
is the label for data instance i. In order to validate the
models learned, it is common practice to select some
of the training data to be used in testing the resulting
classifier models. This testing, or validation data, is not
used in training the classifier model.

Recent results in solving classification problems
indicate that the use of ensembles, or sets, of classifier
models, often leads to improved performance over using
single classifier models [1, 2, 3, 18]. Much of the
previous work on ensemble classifier models (see e.g.,
[5]) has focused on homogeneous ensemble classifiers—
i.e., collections of base classifiers of a single model
type. In this work, we focus on heterogeneous ensemble
classifiers, where the classifiers in the collection are not
of the same type. Note that such classifier models are
also referred to as hybrid ensemble classifiers.

Our work with heterogeneous ensemble classifiers
focuses on using diversity measures as a tool to demon-
strate how heterogeneous ensemble classifiers can out-
perform homogeneous ensemble classifiers. Specifically
we explore the relationships between accuracy and di-
versity of the predictions across the base classifiers in
each ensemble classifier. Our main goal in this work is
to determine if heterogeneous ensemble classifier perfor-
mance is correlated to diversity of its base classifiers.

A general discussion of the relationship between ac-
curacy and different diversity measures can be found in
[15] and references within. Some results on synthetic
data are presented in that book, but there is no dis-
cussion of the issues associated with heterogeneous en-
semble classifiers. In terms of diversity in heterogeneous
ensembles, Bian and Wang [3] discussed theoretical con-
nections between different diversity measures and per-
formed several experiments relating accuracy to those
measures. However, that work lacked a detailed study
on the relationships between accuracy and diversity as
a function of the how the heterogeneous ensemble clas-
sifier was constructed. In this work, we expand upon
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this prior work, investigating more deeply the relation-
ships between accuracy and diversity in heterogeneous
ensemble classifiers and provide insight into how such
classifiers can be used for improved classification per-
formance.

Our contributions in this paper are summarized as
follows:

• We show that a simple approach to creating het-
erogeneous ensemble classifiers using homogeneous
ensemble classifiers leads to improved accuracy for
all data sets we experimented with.

• Using empirical results on a variety of standard
data sets, we demonstrate that heterogeneous en-
semble classifiers are sensitive not only to the types
of base classifiers used but the specific composition
of base classifier models as well.

• We illustrate how larger ranges of diversity mea-
sures are created by varying the percent composi-
tion of base classifiers in heterogeneous ensemble
classifiers as compared to varying directly the pa-
rameters used to generate homogeneous ensemble
classifiers.

2 Diversity

The success of ensemble classification models over non-
ensemble models is partially dependent on the diversity
of the predictions made by its base classifiers [7, 11].
To see this, consider the case when all of the base
classifiers make the same predictions. In that case the
ensemble classifier would perform no better than any of
the base classifiers taken individually and there would
be no benefit to using an ensemble classifier. In order to
objectively study the relationship between diversity and
ensemble classifier performance, we first need to define
objective measures of the diversity of predictions made
by a set of classifiers.

There are two types of measures that have been
used to study the diversity of ensembles: pairwise
and non-pairwise. Pairwise measures are designed to
compare the differences in predictions of two classifiers.
Their interpretation in that setting is clear, but once
averaged over all possible pairs in a base classifier
set, the interpretation may become less clear. In this
paper we only explore the mean of pairwise diversity
measures but to get a better understanding of what
these measures are trying to tell us it may be useful
to study other statistics such as the standard deviation
as well. Non-pairwise diversity measures are designed to
measure differences in predictions of sets of more than
two classifiers. Although their definitions are typically
more complex than the pairwise diversity measures,

their interpretations are not muddled by the details of
working with ensembles of size greater than two.

The following pairwise diversity measures have been
used recently to study the diversity of ensembles: dis-
agreement [17], double fault [9, 17], correlation [15],
and Yule’s Q-statistic [20]. As well, the following
non-pairwise diversity measures have been proposed for
studying ensembles: entropy [6], Kohavi-Wolpert vari-
ance [13], interrator agreement measure [8], measure
of difficulty [11], general diversity, and coincident fail-
ure diversity[14]. Bian and Wang showed that many of
these measures have a level of similarity, and grouped
the measures into 3 sets of correlated measures [3]. We
chose one diversity measure from each group for use in
our experiments: disagreement, double fault, and coin-
cident failure diversity.

To generalize the pairwise diversity measures to
an entire ensemble, we took the the average of the
measurents over every pair of base classifiers. For a
set of base classifiers B the average pairwise diversity
can be calculated using:

(2.1) Average =
2
(∑|B−1|

i=1

∑|B|
j=i+1 diversityi,j

)
(n)(n− 1)

The following are definitions for the diversity mea-
sures that we explored.

2.1 Disagreement Disagreement between a pair of
classifiers, f and g, is the proportion of instances for
which they predict different class labels. The range of
this measure is between 0 (always agree), and 1 (always
disagree).

(2.2) D =
1
n

n∑
i=1

If,g(xi)

where

If,g(x) =
{

1 : f(x) = g(x)
0 : f(x) 6= g(x) .

2.2 Double Fault Measure The double fault mea-
sure between a pair of classifiers is the proportion of
instances for which they both predict the wrong class.
The value of this measure is 1 when both of the clas-
sifiers are always wrong and 0 when the classifiers are
never simultaneously wrong about the same instance.
A low double fault measure is desired for an ensem-
ble, because otherwise many of the base classifiers will
be making incorrect predictions for the same instances
which will increase the chance of that instance being
misclassified by the ensemble classifier.



(2.3) DF =
1
n

n∑
i=1

(1−Of (xi))(1−Og(xi))

where

Of (xi) =
{

1 : f(xi) = yi

0 : f(x) 6= yi
.

2.3 Coincident Failure Diversity Coincident fail-
ure diversity (CDF) is a measure whose value is high-
est (1), when misclassifications are unique to one base
classifier and lowest (0) when all base classifiers always
make the same class label predictions.

Let pi denote the probability that exactly i of
the L base classifiers predict the wrong class label for
a randomly chosen instance. Then coincident failure
diversity is defined as follows:

(2.4) CFD =
{

0 : p0 = 1
1

1−p0

∑L
i=1

L−i
L−1pi : p0 < 1

2.4 Examples Listed below is a classification prob-
lem where the true label for instance i is yi. Also listed
is an ensemble whose predictions f∗ along with the base
classifier predictions fj are given as:

i 0 1 2 3 4 5
f1(xi) a a a b b c
f2(xi) c b a c b b
f3(xi) a a a c c c
f∗(xi) a a a c b c
yi a b a c b c

For diversity measures such as double fault and
CFD we are interested only in which predictions are
correct and not the actual class labels predicted. The
following table, where the value 1 indicates that the
prediction was correct and 0 indicates an incorrect pre-
diction, is helpful for calculating those measurements.

i 0 1 2 3 4 5 Accuracy
Of1(xi) 1 0 1 0 1 1 4/6
Of2(xi) 0 1 1 1 1 0 4/6
Of3(xi) 1 0 1 1 0 1 4/6
Of∗(xi) 1 0 1 1 1 1 5/6

To calculate CFD, first calculate values for pi and
then plug them into the equation given in the definition.
The value of each pi will be the proportion of instances
that were incorrectly classified by exactly i of the base
classifiers: p0 = 1/6, p1 = 4/6, p2 = 1/6, and p3 = 0.

CFD =
1

1− p0
(
2
2
p1 +

1
2
p2 +

0
2
p3)

CFD =
6
5
× (

4
6

+
1
12

) = 9/10

The pairwise diversity measurements need to be
calculated for each pair of base classifiers, of which there
are three in this example. Each row in the following
table shows the calculation of the double fault measure,
DF , for one pair of base classifiers:

i 0 1 2 3 4 5 DF
f1 vs f2 0 0 0 0 0 0 0/6
f1 vs f3 0 1 0 0 0 0 1/6
f2 vs f3 0 0 0 0 0 0 0/6
f∗ DF = (0 + 1/6 + 0)/3 = 1/18

To calculate disagreement, the actual predicted
labels must be consulted (when the number of classes
is greater than two). When two base classifiers are
wrong about the same instance, they may still disagree
with each other. For example, if the true class is
a and the base classifiers predict b and c, they are
both wrong, but they also disagree. So it is necessary
to look at the predicted class labels to determine the
proportion of instances they disagree about. Below is a
table containing those proportions for each pair of base
classifiers. A value of 1 indicates disagreement between
the pair of base classifiers and a value of 0 indicates
agreement.

i 0 1 2 3 4 5 D
f1 vs f2 1 1 0 1 0 1 4/6
f1 vs f3 0 0 0 1 1 0 2/6
f2 vs f3 1 1 0 0 1 1 4/6
f∗ D = (4/6 + 2/6 + 4/6)/3 = 5/9

3 Numerical Results

In this section, we present numerical results illustrat-
ing the relationship between diversity and accuracy in
ensemble classifiers as well as comparisons of the per-
formance of heterogeneous versus homogeneous ensem-
ble classifiers. All experiments were performed using
Hemlock (Heterogeneous Ensemble Machine Learning
Open Classification Kit) [10], a Java software library de-
signed for investigating ensemble learning models. The
base classifiers used in the experiments here were cre-
ated using the Hemlock interface to the WEKA ma-
chine learning library [19].

Each of the ensemble classifiers created consisted
of 100 base classifiers which were trained using bag-
ging [4]. The use of bagging ensured that each base
classifier was trained with a subsample of the training



set, and is a common method for increasing the diver-
sity of ensemble classifiers [4]. Homogeneous ensemble
classifiers consisted of base classifiers of support vec-
tor machines (SVMs) [16], random trees (RT) [5], and
naive Bayes (NB) [12] classifiers as base classifier mod-
els that are implemented in WEKA. Default WEKA
model parameters were used in each case. The hetero-
geneous ensemble classifiers consisted of combinations
of the three classifiers types in pairs and in varying pro-
portions. Each ensemble model was used in conjunction
with 5-fold stratified cross validation to create a total
of 5 ensemble classifiers. Using 5-fold cross validation
allowed us to evaluate the diversity and accuracy mea-
sures using a test set not used in the training of the
classifiers. We used 5-fold cross validation rather than
10-fold cross validation, because it lead to larger testing
sets which we believe may be important when measuring
diversity measures. In order to make up for the smaller
number of training instances used in 5-fold cross valida-
tion, we repeated every experiment 10 times using dif-
ferent random seeds for either the fold creation or bag-
ging or both (see the specific experiments later in this
section for more details). Each heterogeneous ensemble
classifier was created using a percentage of base classi-
fiers from each of two homogeneous ensemble classifiers.
The proportion of base classifiers (in 1% increments)
led to different heterogeneous ensemble classifiers. This
lead to a total of 297 different ensemble models for each
experiment, 3 of which were homogeneous and 294 of
which were heterogeneous.

Eight data sets representing a wide range of classi-
fication problems were used in the experiments. Table
1 presents the characteristics of these data sets; note
the varying numbers of instances, classes, and features
across the set. These data sets are a subset of the data
used in previous work on analyzing performance of en-
semble classifier models [1]. The performance measure
computed for all experiments was accuracy (i.e., propor-
tion of instances with correctly predicted labels) as it
easily generalizes to multi-class classification problems.
Majority voting [15] was used as the fusion method for
combining the base classifiers to create the ensemble
classifiers. Using voting as the fusion function seemed
appropriate, because it uses the same type of output
from the base classifiers (class labels) as the diversity
measurements.

Table 2 shows the accuracy of ensemble models av-
eraged over a total of 50 ensemble classifiers (corre-
sponding to the 10 independent runs of 5-fold cross val-
idation). Accuracy measures for the homogeneous en-
semble classifiers consisting of SVM, NB, and RT base
classifiers and the best heterogeneous ensemble classi-
fier are presented. Note that across all data sets, at

Table 1: Characteristics of the experimental data sets.

Cont. Nom.
Name Instances Classes Attr. Attr.

abalone 4177 29 7 1

bupa 345 2 6 0

dna 3186 3 0 180

glass 214 6 9 0

ion 351 2 34 0

promoters 106 2 0 57

sonar 208 2 60 0

yeast 1484 10 8 0

Table 2: Average accuracy over ten experiments re-
peated with different random seeds using 5-fold cross
validation and bagging. At least one heterogeneous en-
semble classifier outperformed all of the homogeneous
ensemble classifiers across the data sets.

Average Accuracy

Data set NB SVM RT Het.

abalone 0.2371 0.2532 0.2419 0.2555

bupa 0.5594 0.5809 0.7272 0.7333

dna 0.9396 0.9452 0.9501 0.9582

glass 0.5039 0.5820 0.7741 0.7791

ion 0.8253 0.8824 0.9367 0.9398

promoters 0.8874 0.9223 0.8994 0.9324

sonar 0.6899 0.8289 0.82886 0.82889

yeast 0.5792 0.5703 0.6080 0.6193

least one of the heterogeneous ensemble classifiers out-
performs all homogeneous ensemble classifiers. Table
3 presents results of the average CFD measures corre-
sponding to the accuracy results in Table 2. In 6 out of
the 8 data sets, a heterogeneous model generated on av-
erage more diversity (as measured with CFD) than any
of the homogeneous models. Table 4 shows the average
disagreement measures for the different ensemble mod-
els. The RT ensemble classifier models dominate the
other homogeneous models but the heterogeneous mod-
els still do better for 4 of the 8 data sets. Table 5 differs
from the previous tables, because the double fault mea-
sure corresponds to more diverse ensembles when the
value is low. So for the heterogeneous models we found
the model that had the minimum average double fault
measure.

Plots of accuracy and diversity measures for the
bupa and yeast data set can be found in Figure 6
in Appendix A. The plots illustrate several easily
identifiable trends between different measures across the
data sets, but the combination of noise and nonlinear



Table 3: Average coincident failure over ten experi-
ments repeated with different random seeds using five
fold cross validation and bagging. A heterogeneous en-
semble classifier on average outperformed all of the ho-
mogeneous ensemble classifiers.

Average Coincident Failure Diversity

Data set NB SVM RT Het.

abalone 0.1745 0.2238 0.1971 0.2475

bupa 0.5375 0.4897 0.6256 0.6253

dna 0.4748 0.8225 0.7337 0.9125

glass 0.4367 0.4849 0.6328 0.6324

ion 0.3880 0.6193 0.8546 0.8583

promoters 0.7709 0.8004 0.6433 0.8665

sonar 0.5125 0.6588 0.6921 0.7417

yeast 0.4015 0.3081 0.4917 0.5425

Table 4: Average disagreement diversity over ten exper-
iments repeated with different random seeds using five
fold cross validation and bagging.

Average Disagreement Diversity

Data set NB SVM RT Het.

abalone 0.2346 0.2677 0.7589 0.7595

bupa 0.2647 0.1328 0.3873 0.4056

dna 0.0213 0.0828 0.3797 0.3777

glass 0.3134 0.3239 0.3930 0.4463

ion 0.0558 0.0661 0.1558 0.1656

promoters 0.1376 0.1230 0.4437 0.4423

sonar 0.1268 0.1818 0.3735 0.3724

yeast 0.1668 0.1229 0.5027 0.5019

Table 5: Average double fault diversity over ten exper-
iments repeated with different random seeds using five
fold cross validation and bagging. Lower measures cor-
respond to more diverse models.

Average Double Fault Diversity

Data set NB SVM RT Het.

abalone 0.5787 0.5475 0.1809 0.1799

bupa 0.2438 0.3469 0.18702 0.18697

dna 0.0509 0.0396 0.0612 0.0359

glass 0.3240 0.2754 0.1228 0.1229

ion 0.1454 0.0947 0.0505 0.0506

promoters 0.0725 0.0543 0.1413 0.0544

sonar 0.2555 0.1528 0.1280 0.1248

yeast 0.3310 0.3626 0.1844 0.1843

interactions prevents deeper understanding of how to
make use of such information when creating ensemble
classifiers.

The plots in Figures 1–3 help further illustrate
several trends identified in the results. These plots
are taken from three different data sets and each of
them is a plot of a different homogeneous ensemble
pairing. Although, it is not entirely clear what the
relationships between accuracy and diversity are in
these plots, they do suggest that the most successful
heterogeneous ensemble classifiers for a particular data
set generally involve a large proportion of RT base
classifiers. To explain the success of the RT classifiers, it
is helpful to note that while the disagreement measures
are usually high (adding to the diversity) the double
fault measure is usually relatively low. So the diversity
that is created by RT classifiers, is created in a way that
doesn’t reduce total ensemble accuracy.

Both of the heterogeneous ensemble classifiers that
involve RT base classifiers show that the best perfor-
mance is usually achieved through including a larger
number of RT base classifiers than SVM or NB base
classifiers. The plots also show that there tends to
be a wide range in the diversity values and the plots
of the diversity measures are usually arching towards
more diversity. The plot in Figure 2 is representative of
heterogeneous ensemble classifiers that include NB and
SVM base classifiers, in that they often show large im-
provement, in terms of accuracy, over what SVM or NB
homogeneous ensemble classifiers demonstrate. How-
ever the pointed shape of the accuracy curve is unusual
and demonstrates that the performance of the hetero-
geneous ensemble classifier can be very sensitive to the
exact composition of its base classifiers.
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Figure 1: Comparison of homogeneous and heteroge-
neous ensemble classifiers using the abalone data set.

Each of the heterogeneous ensemble classifier ex-
periments showed how two homogeneous ensemble clas-
sifiers of different types would perform when mixed to-
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Figure 2: Comparison of homogeneous and heteroge-
neous ensemble classifiers using the ion data set.
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Figure 3: Comparison of homogeneous and heteroge-
neous ensemble classifiers using the dna data set.

gether with different levels of composition. The question
we had when we saw the arcs in the heterogeneous en-
semble classifier plots was: do the arcs represent extra
performance or extra diversity that is caused by combin-
ing different types of base classifiers into one ensemble
classifier, or are the arcs just a byproduct of combin-
ing base classifiers from ensemble classifiers with large
differences in performance and diversity? One might as-
sume that if two homogeneous ensemble classifiers con-
sisting of base classifiers of the same type with different
levels of accuracy were were blended together, that the
plots of those measures would result in a straight line
between the end points (or more of a straight line than
exhibited by the plots of the heterogeneous ensemble
mixtures). To test that, we used five fold cross valida-
tion ten times to create ensemble classifiers of bagged
random trees. We used the same random seed for the
cross validation each time, but used ten different seeds
for the bagging procedure. For each of the five folds we
selected the ensemble classifiers that had the best and
worse performance based on one of the measures: accu-
racy, disagreement, double fault, CFD. We then gradu-

ally blended the base classifiers from the two ensembles
together, and plotted how the performance changed as
the composition of base classifiers changed. The plots
showed that for most of the measures, the composition
of two homogeneous ensembles of the same type lead to
values closer the line than the values measured for the
heterogeneous ensemble classifiers.

For each of the data sets, we calculated the average
distance above the line, amodel,measure, and the max-
imum distance above the line, mmodel,measure, for the
composition of two RT ensemble classifiers, and for the
different heterogeneous ensemble classifiers. We then
calculated aheter,measure− ahomo,measure for each of the
heterogeneous models and each of the measures. The
average difference is important because it may not be
practical to search for the best composition in which
case an arbitrary heterogeneous composition will be cho-
sen. In that case the differences in the average distances
will represent the expected advantage of using a het-
erogeneous ensemble classifier. We used the Wilcoxon
signed rank test to calculate p-values for the hypothesis:

Ha : Median(ahet.,measure − ahom.,measure) > 0
H0 : Median(ahet.,measure − ahom.,measure) ≤ 0

Where the median refers to the median value of
the difference over all data sets. For this test to be
relevant we must assume that the eight data sets used in
this study are representative of the greater population
of data sets. If the tests ends up lending support to
the alternative hypothesis, then more times than not,
a data set will be expected to have a larger measure
value above the line for the heterogeneous model when
the composition is randomly chosen, as compared to
a homogeneous ensemble classifier that is a random
mixture of the best and worst ensemble classifiers.

We also ran the same tests using only the compo-
sitions that had the maximum values for the measures,
rather than the average over all compositions. This was
done to test the potential for heterogeneous ensemble
classifiers to create an advantage over homogeneous en-
semble classifiers. The following were the hypothesis
used in our Wilcoxon signed rank tests:

Ha : Median(mhet.,measure −mhom.,measure) > 0
H0 : Median(mhet.,measure −mhom.,measure) ≤ 0

Test that lend support to the alternative hypoth-
esis indicate that when a random data set is chosen,
more often than not, the best composition for the het-
erogeneous will be further from the line than the best
composition for the homogeneous mixture for a data set

These results lend support to the theory that the
extra performance and diversity are caused by the



Table 6: P-values for significance tests using Wilcoxon
signed rank tests. Tests with low p-values imply that the
interactions of base classifiers of different models, found
in heterogeneous ensemble classifiers, lead to higher
values of the corresponding measure than would be
expected with homogeneous ensemble classifiers.

p-value

Measure Model Average Max

NB RT 1.000 0.926
Accuracy NB SVM 0.027 0.875

SVM RT 0.629 0.727

NB RT 0.004 0.004
Disagreement NB SVM 0.004 0.004

SVM RT 0.004 0.004

NB RT 0.012 1.000
Double Fault NB SVM 0.004 1.000

SVM RT 0.055 1.000

NB RT 0.004 0.004
CFD NB SVM 0.004 0.004

SVM RT 0.004 0.004

interactions in the heterogeneous ensemble classifier, for
the tests where the p-values are small. These results
only hold when the number of base classifiers for the
ensemble classifiers is arbitrarily fixed (in this case 100).

One thing that was very clear from the plots from
the above experiments was that heterogeneous ensemble
models can have a much larger range of diversity than
homogeneous ensemble models. The plots in Figures 4
and 5 can be compared to show the differences between
heterogeneous mixtures and homogeneous mixtures, re-
spectively, of base classifier sets. These plots are specifi-
cally taken from the experiments with the yeast data set
but the trends found in these two graphs are represen-
tative of what is found in other data sets. What we see
is that the range of accuracy in the heterogeneous and
homogeneous mixtures are about the same. However
the range in diversity measures for the heterogeneous
mixtures are much larger than in the homogeneous mix-
tures. So even though the homogeneous ensemble clas-
sifiers show a wide range of accuracy measures, they
show relatively little difference in the amount diversity
they display. This may explain why the heterogeneous
models are often able have better accuracy than homo-
geneous models. During training, homogeneous models
search through a smaller space in terms of diversity.

4 Conclusions and Future Work

Our experiments showed that heterogeneous ensemble
classifiers are capable of being more accurate and more
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Figure 4: Heterogeneous ensemble classifiers using the
yeast data set. Ensemble classifiers are composed of
SVM and RT base classifiers. The left most value
on the x-axis represents homogeneous RT ensemble
classifiers, the right most value represents homogeneous
SVM ensemble classifiers, and everything in between
is representative of compositions of both SVM and
RT base classifiers, and are therefore heterogeneous
ensemble classifiers.
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Figure 5: Homogeneous ensemble classifiers using the
yeast data set. The ensemble classifiers are created
using a mixture of of the best and worst performing
ensembles for the given measure. The left most value
on the x-axis represents the worst ensemble classifier
for a measure, the right most value represents the best
ensemble classifier, and everything in between is some
combination of the two.

diverse than homogeneous ensemble classifiers. The
method we used performed a search over all possible
heterogeneous model compositions involving only two
base classifier models. In practice this may not be pos-
sible, but also may not be necessary using other fusion
functions that re-weight the predictions generated by
base classifiers. So in the future we intend to perform
follow-up experiments using different fusion functions.

Another question that arose during our experimen-



tation was whether or not the diversity measures we
used were adequate for for multiclass diversity prob-
lems, and whether or not they were appropriate for use
with fusion functions that use prediction outputs other
than just target class labels. If the fusion function is re-
weighting the the outputs of the base classifier predic-
tions, it seems logical that the diversity measures should
re-weight the amount that each base classifier affects the
diversity measure of the ensemble classifier. The tables
in Appendix A show the amount of improvement over
the value at the line for each of the ensemble types.

We would also like to run these test on more data
sets to further support our conjecture that heteroge-
neous ensemble classifiers result in increased perfor-
mance and diversity. We also need to extend these re-
sults to the case where the number of base classifiers
is not fixed. Ideally, out of bag (OOB) error [4] could
be used as a stopping criteria for the set of base classi-
fiers for each ensemble classifier. We would then still be
interested if performance and diversity could increase
in heterogeneous ensemble classifiers, but also if hetero-
geneous ensemble classifiers of significantly smaller sizes
could achieve the same performance and diversity as the
best homogeneous ensembles classifier.
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A Accuracy and Diversity Measure Results

Table 7: Maximum vertical displacement between dis-
agreement measure between the heterogeneous ensem-
ble classifier and a linear interpolation of the disagree-
ments of two different homogeneous ensemble classifiers.

Accuracy

Data NB RT NB SVM SVM RT RT RT

abalone 0.0351 0.0188 0.0408 0.0416

bupa 0.0334 0.0833 0.0460 0.0341

dna 0.0068 0.0110 0.0095 0.0058

glass 0.0695 0.0410 0.0501 0.0359

ion 0.0338 0.0838 0.0163 0.0028

promoters 0.0198 0.0161 0.0282 0.0293

sonar 0.0091 0.0307 0.0007 0.0306

yeast 0.0280 0.0125 0.0304 0.0127

Average 0.0294 0.0371 0.0278 0.0241

Disagreement

Data NB RT NB SVM SVM RT RT RT

abalone 0.2344 0.1996 0.1996 0.0004

bupa 0.1692 0.4694 0.2471 0.0041

dna 0.2027 0.2567 0.1115 0.0098

glass 0.2010 0.2257 0.1359 0.0037

ion 0.3174 0.5458 0.1691 0.0116

promoters 0.1343 0.0580 0.1467 0.0050

sonar 0.2124 0.3205 0.0884 0.0013

yeast 0.1713 0.2596 0.2161 0.0035

Average 0.2053 0.2919 0.1643 0.0049

Double Fault

Data NB RT NB SVM SVM RT RT RT

abalone -0.0043 -0.0067 -0.0037 -0.0029

bupa -0.0012 -0.0029 -0.0017 -0.0085

dna -0.0006 -0.0003 -0.0004 -0.0095

glass -0.0019 -0.0021 -0.0012 -0.0147

ion -0.0009 -0.0015 -0.0004 -0.0411

promoters -0.0006 -0.0001 -0.0006 -0.0239

sonar -0.0012 -0.0014 -0.0003 -0.0223

yeast -0.0015 -0.0013 -0.0018 -0.0011

Average -0.0015 -0.0020 -0.0013 -0.0155

CFD

Data NB RT NB SVM SVM RT RT RT

abalone 0.2298 0.1939 0.1010 0.0024

bupa 0.0275 0.1212 0.1440 0.0025

dna 0.4622 0.3400 0.0885 0.0016

glass 0.0355 0.0287 0.0370 0.0064

ion 0.4061 0.3397 0.1760 0.0074

promoters 0.0981 0.0087 0.0919 0.0038

sonar 0.2032 0.1098 0.1036 0.0056

yeast 0.2381 0.1658 0.3906 0.0004

Average 0.2126 0.1635 0.1416 0.0038

Table 8: Average vertical displacement between dis-
agreement measure between the heterogeneous ensem-
ble classifier and a linear interpolation of the disagree-
ments of two different homogeneous ensemble classifiers.

Accuracy

Data NB RT NB SVM SVM RT RT RT

abalone 0.0111 0.0043 0.0218 0.0061

bupa -0.0047 0.0312 -0.0167 0.0109

dna 0.0016 0.0049 0.0041 0.0012

glass 0.0024 0.0163 0.0289 0.0146

ion 0.0099 0.0259 0.0028 -0.0002

promoters 0.0055 0.0081 0.0140 -0.0156

sonar -0.0214 0.0061 -0.0071 0.0025

yeast 0.0067 0.0075 0.0099 -0.0016

Average 0.0014 0.0130 0.0072 0.0022

Disagreement

Data NB RT NB SVM SVM RT RT RT

abalone 0.1634 0.3544 0.1385 -0.0002

bupa 0.1170 0.3531 0.1762 -0.0021

dna 0.1323 0.1790 0.0754 0.0052

glass 0.1415 0.1591 0.0943 -0.0022

ion 0.2276 0.4224 0.1172 -0.0026

promoters 0.0900 0.0379 0.0987 0.0001

sonar 0.1457 0.2314 0.0587 -0.0040

yeast 0.1179 0.1849 0.1485 0.0013

Average 0.1419 0.2403 0.1134 -0.0006

Double Fault

Data NB RT NB SVM SVM RT RT RT

abalone -0.0043 -0.0067 -0.0037 -0.0029

bupa -0.0012 -0.0029 -0.0017 -0.0085

dna -0.0006 -0.0003 -0.0004 -0.0095

glass -0.0019 -0.0021 -0.0012 -0.0147

ion -0.0009 -0.0015 -0.0004 -0.0411

promoters -0.0006 -0.0001 -0.0006 -0.0239

sonar -0.0012 -0.0014 -0.0003 -0.0223

yeast -0.0015 -0.0013 -0.0018 -0.0011

Average -0.0015 -0.0020 -0.0013 -0.0155

CFD

Data NB RT NB SVM SVM RT RT RT

abalone 0.1258 0.1370 0.0567 0.0000

bupa 0.0164 0.0797 0.0799 0.0000

dna 0.2666 0.2004 0.0544 -0.0008

glass 0.0234 0.0196 0.0236 0.0014

ion 0.2335 0.2692 0.1074 0.0019

promoters 0.0595 0.0054 0.0558 -0.0036

sonar 0.1170 0.0853 0.0619 0.0022

yeast 0.1410 0.1228 0.2266 -0.0010

Average 0.1229 0.1149 0.0833 0.0000



bupa data set

yeast data set

Figure 6: Matrix plots of pairwise comparisons of accuracy and diversity measures using SVM, RT, and NB
classifiers for the bupa (top) and yeast (bottom) data sets. The rows of each plot correspond to 1) accuracy, 2)
disagreement, 3) Yule’s Q-statistic, 4) double fault, 5) entropy, 6) general diversity, 7) coincident failure, and 8)
measure of difficulty as described in Section 2. The columns are ordered the same, but starting with disagreement.
Subplot (i, j) in each matrix plot is a plot of the measure in row i (Y-axis) by column j (X-axis).




