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2 ‘ Motivation: Multi-scale & Multi-physics Coupling
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Complex System Model

PDEs, ODEs
Nonlocal integral
Classical DFT
Atomistic, ...

N_’ /V2
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Traditional Methods

Mesh-based (FE, FV, FD)
Meshless (SPH, MLS)
Implicit, explicit
Eulerian, Lagrangian...

There exist established rigorous mathematical theories for
coupling multi-scale and multi-physics components based on
traditional discretization methods (“Full Order Models” or FOMs).

Coupled Numerical Model

Monolithic (Lagrange multipliers)
Partitioned (loose) coupling
Iterative (Schwarz, optimization)




3 ‘ Motivation: Multi-scale & Multi-physics Coupling
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There exist established rigorous mathematical theories for dhon 5
@ coupling multi-scale and multi-physics components based on - P
traditional discretization methods (“Full Order Models” or FOMs).
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Complex System Model Traditional Methods Coupled Numerical Model Traditional + Data-Driven Methods
» PDEs, ODEs * Mesh-based (FE, FV, FD) < Monolithic (Lagrange multipliers) * PINNs
* Nonlocal integral * Meshless (SPH, MLS) « Partitioned (loose) coupling » Neural ODEs
» Classical DFT * Implicit, explicit » |terative (Schwarz, optimization) * Projection-based ROMs, ...
+ Atomistic, ... * Eulerian, Lagrangian, ...
Unfortunately, existing algorithmic and software infrastructures are ill-equipped @
to handle plug-and-play integration of non-traditional, data-driven models!



‘ Flexible Heterogeneous Numerical Methods (fHNM) and Multi-faceted
* ¥ Mathematics for Predictive Digital Twins (M2dt) Projects f M2dt

Principal research objective:
» Discover mathematical principles guiding the assembly of standard and data-driven numerical
models in stable, accurate and physically consistent ways.

=%, U.S. DEPARTMENT OF

ENERGY

Office of Science

Principal research goals:

« “Mix-and-match” standard and data-driven models from three-classes €
I » Class A: projection-based reduced order models (ROMs) | This talk. &)R\D
» Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)  aomon osecre
» Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

« Ensure well-posedness & physical consistency of
resulting heterogeneous models.

 Solve such heterogeneous models efficiently.

Three coupling methods:

I- Alternating Schwarz-based coupling | This talk.
« Optimization-based coupling
« Coupling via generalized mortar methods
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The Schwarz Alternating Method for Domain
Decomposition-Based Coupling

Extension to FOM*-ROM# and ROM-ROM Coupling

0 > r Qs

Numerical Examples |
» 2D Shallow Water Equations (SWE)
» 2D Burgers’ Equations

« — — — Schwarz “glue”

» 2D Euler Equations

Q3 \
. High-fidelity — \
\ --4- mesh-free \
model /
(Physics3)

Ongoing/Future Work & Summary

*Full-Order Model. #Reduced Order Model.
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Q3 \
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\ --4- mesh-free \
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Ongoing/Future Work & Summary

*Full-Order Model. #Reduced Order Model.



7 I Schwarz Alternating Method for Domain Decomposition

I
* Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.
Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain. H. Schwarz (1843-1921)

Basic Schwarz Algorithm

overlapping I

Initialize:
« Solve PDE by any method on Q; w/ initial guess for transmission BCs on 3.
Iterate until convergence:

« Solve PDE by any method on Q, w/ transmission BCs on I, based on values

Qs

\

o0

just obtained for Q;. non-overlapping
* Solve PDE by any method on Q, w/ transmission BCs on I; based on values a, )F 0,
just obtained for Q. ]

\

002
« Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods |
to solve linear algebraic equations. ‘

Idea behind this work: using the Schwarz alternating method as a discretization
method for solving multi-scale or multi-physics partial differential equations (PDEs).




s I How We Use the Schwarz Alternating Method

AS A PRECONDITIONER |
| FOR THE LINEARIZED |
SYSTEM

AS A SOLVER FOR THE |
COUPLED
FULLY NONLINEAR
PROBLEM




Spatial Coupling via (Multiplicative) Alternating Schwarz

9
Overlapping Domain Decomposition Na) =f, in 0
{ u§n+1) =g, on aﬂl\l—‘l
(n+1) _ . ()

(N (u* ) = £, in 0,

e Dirichlet-Dirichlet transmission BCs
[Schwarz 1870; Lions 1988; Mota et

2 al. 2017; Mota et al. 2022]

| ugn+1) =g, on 0L \I; }

Lugnﬂ) = u§n+1) on I 09

Non-overlapping Domain Decomposition

( (n+1)\ _ .

N(“l ) =f,  inly « Relevant for multi-material and multi-
{u™ =g, onaQ\l physics coupling

(™ =241, onT » Alternating Dirichlet-Neumann

(v (ugnﬂ)) . nQ, Q )F a, tran.sm15519n BCs [Z?n(?lll et al. 1987]
] e _ ; v * Robin-Robin transmission BCs also lead
ta =9 on 08\l f, to convergence [Lions 1990]

(n+1) (n+1) o9
\l7u2 -n=lVuy ‘n, on I

« 0 €][0,1]: relaxation parameter (can
Apsr = 60ul” + (1 = 6)4,,0n T,forn = 1 help convergence)



10 | Additional Parallelism via Additive Schwarz

T . Model PDE:
Multiplicative Overlapping Schwarz Additive Overlapping Schwarz N@w) = f, in 0

s ( . { =

N(u§n+1)) —f,inQ, N(u§"+1)) —f,inQ, u=g, on 0.2
< u§n+1) =g, on 00\l < u§n+1) =g, on 0\
\ugn“) =u”  onn \ugn“) =ul®  onT
( . ( 1 .

N(ud*™)=f,ina, N(ud*)=Ff,inq, "
YUt =g, on a0,\I, Yul™ =g, on a,\ :
kugn+1) _ u§n+1) on 1-,2 \ ugn+1) _ ugn) on Fz -

« Multiplicative Schwarz: solves subdomain problems sequentially (in serial)
» Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later

> Typically requires a few more Schwarz iterations, but does not degrade accuracy
> Parallelism helps balance additional cost due to Schwarz iterations

> Applicable to both overlapping and non-overlapping Schwarz



11 I Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for (2,

Time integrator for (2,

Model PDE:

u+Nu=f, in 2
u(x,t) = g(t), on 41
u(x,0) = uy, in N




2 I Time-Advancement Within the Schwarz Framework

Q, TO T1

Controller time stepper
P Integrate using At
- Time integrator for (2,
Q, Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ), solution from time T; to time T, using time-stepper in Q, with time-step 4t,, using
solution in Q, interpolated to I; at times T; + n4t;.

u+ N =f, in 0
Model PDE: ] u(x,t) = g(t), on afn
u(x; O) = Uy, ]n )




i3 I Time-Advancement Within the Schwarz Framework

Q, TO T1

Controller time stepper

I
\ - l - / Interpolate

from (), to [},

Time integrator for (2,

Q, > Time integrator for (2,
Integrate using A4t,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ), solution from time T; to time T, using time-stepper in Q, with time-step 4t,, using
solution in Q, interpolated to I; at times T; + n4t;.

Step 2: Advance (, solution from time T; to time T;,, using time-stepper in Q, with time-step 4t,, using
solution in Q, interpolated to I, at times T; + n4t,.

u+ N =f, in 0
Model PDE: ] u(x,t) = g(t), on afn
u(x; O) = Uy, ]n )




14 I Time-Advancement Within the Schwarz Framework

Q, TO Tl

Controller time stepper
I
- I Time integrator for (2,
Q, ' Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ), solution from time T; to time T, using time-stepper in Q, with time-step 4t,, using
solution in Q, interpolated to I; at times T; + n4t;.

Step 2: Advance (, solution from time T; to time T;,, using time-stepper in Q, with time-step 4t,, using
solution in Q, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, ;. u+Nu) =f, in 0
Model PDE: u(x, t) = g(t), on d.fn
u(x,0) = uy, in 2




5 I Time-Advancement Within the Schwarz Framework

Q
1 TO T1
I Integrate using At
T Interpolateffrom
AN Q,toy
Q,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ), solution from time T; to time T, using time-stepper in Q, with time-step 4t,, using

solution in Q, interpolated to I; at times T; + n4t;.

Step 2: Advance (, solution from time T; to time T;,, using time-stepper in Q, with time-step 4t,, using

solution in Q, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, ;.
> |If unconverged, return to Step 1.

Controller time stepper

Time integrator for (2,

Time integrator for (2,

Model PDE:

u+Nuw =f,

u(x,t) = g(t),
u(x,0) = uy,

in N
on 0.
in




6 I Time-Advancement Within the Schwarz Framework

Q
1 ’1"1
I Integrate using At
T, gti:)pﬁlate from v
2 1
Q,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ), solution from time T; to time T, using time-stepper in Q, with time-step 4t,, using

solution in Q, interpolated to I; at times T; + n4t;.

Step 2: Advance (, solution from time T; to time T;,, using time-stepper in Q, with time-step 4t,, using

solution in Q, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, ;.

> |If unconverged, return to Step 1.
> |If converged, seti = i + 1and return to Step 1.

T,

Controller time stepper

Time integrator for (2,

Time integrator for (2,

Can use different integrators with

different time steps within each domain!

Model PDE:

u+Nuw =f,

u(x,t) = g(t),
u(x,0) = uy,

in
on 0.
in




17 I Time-Advancement Within the Schwarz Framework

. T, T,
Controller time stepper
£ Integrate using At
ri Interlpolate from Time integrator for (2,
Q,toT AN
= Time integrator for (2,

Time-stepping procedure is equivalent to doing
Step 0: Initialize i = 0 (controller time index). Schwarz on space-time domain [Mota et al. 2022].

Step 1: Advance ), solution from time T; to time T, using time-stepper in Q, with time-step 4t,, using
solution in Q, interpolated to I; at times T; + n4t;.

Step 2: Advance (, solution from time T; to time T;,, using time-stepper in Q, with time-step 4t,, using
solution in Q, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, 4. w+ N =f, in 0
> If unconverged, return to Step 1. Model PDE: ! u(x,t) =g(t), on a0

> |If converged, seti = i + 1and return to Step 1. u(x,0) = u,, in




s | Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics'

Model Solid Mechanics PDEs:

Coupling is concurrent (two-way). Quasistatic: DivP +pgB =0 in () ‘
Ease of implementation into existing massively- | Dynamic: DivP +p9B =pgp in QxI
parallel HPC codes.

Scalable, fast, robust (we target real engineering
problems, e.g., analyses involving failure of bolted
components!).

Coupling does not introduce nonphysical artifacts.

Theoretical convergence properties/guarantees!.

— ) 2
“Plug-and-play” framework: &My LM , _
> Ability to couple regions with different non-conformal meshes, different element types i

and different levels of refinement to simplify task of meshing complex geometries.
> Ability to use different solvers/time-integrators in different regions.
' Mota et al. 2017; Mota et al. 2022. 2 https://github.com/sandialabs/LCM.



https://github.com/sandialabs/LCM.git

Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics?!
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Figure above: tension specimen simulation coupling

composite TET10 elements with HEX elements in Sierra/SM.

Figures right: bolted joint simulation coupling composite
TET10 elements with HEX elements in Sierra/SM.
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Single Q i Schwarz

Single Q 41 schwarz

' Mota et al. 2017; Mota et al. 2022.
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The Schwarz Alternating Method for Domain
Decomposition-Based Coupling

Extension to FOM*-ROM# and ROM-ROM Coupling

0 > r Qs

Numerical Examples |
» 2D Shallow Water Equations (SWE)
» 2D Burgers’ Equations

« — — — Schwarz “glue”

» 2D Euler Equations

Q3 \
. High-fidelity — \
\ --4- mesh-free \
model /
(Physics3)

Ongoing/Future Work & Summary

*Full-Order Model. #Reduced Order Model.



21 | Projection-Based Model Order Reduction via the POD/LSPG*

Method Full Order Model (FOM):

d
—=ftw

* Least-Squares Petrov-Galerkin

1. Acquisition

Number of
time steps
II H
| A
] )
| g ] ©
[ s | i A ]
o 2
':_ ..H.'l‘ | = O %
il iy g5
- o Ra)
) 1= D c =
A =]
i - =z
v

Solve ODE at different

i ) Save solution data
design points

2. Learning

Proper Orthogonal Decomposition (POD):

X = = U 2 v’

3. Projection-Based Reduction
Choose ODE % = f(u; t, 1)
temporal 0
discretization ) =0, n=1,..T
u(t) = u(t) = Pu(t
Reduce the |( )
number of
unknowns
Minimize ~ minimize[| S (P W [
residual |]:|:|]:I | 3
Hyper-reduction/sample mesh ?

ROM = projection-based Reduced Order Model

HROM = Hyper-reduced ROM
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Schwarz Extensions to FOM-ROM and ROM-ROM Couplings

Perform FOM simulation on a spatial domain Q and collect s snapshots

Create domain decomposition of ) into d overlapping or non-
overlapping subdomains (); with N, overlap cells (could be 0).

Compute POD basis @; on each Q; by restricting the snapshots to Q.

For nonlinear problems, compute sample mesh S; on each (;.

> Collocation: minimize the residual at a small subset of DOFs N; «< N.

> Key question: how to sample Schwarz boundaries given fixed
budget of sample mesh points?

Construct POD/LSPG ROM in each subdomain Q;, transmit Schwarz BCs,
apply Schwarz iteration procedure.
» Key question: how to impose Schwarz BCs in ROMs?
% BCs imposed approximately by fictitious ghost cells, as FOMs
are based on cell-centered finite volume (CCFV) discretizations

> To maximize efficiency, we employ additive Schwarz with
OpenMPI parallelism (1 thread/subdomain)

I
Q4
N
QZ
ry) |

5 Yellow:
o+ residual cells,
I white: stencil

cells

,,,,,,

Ghost cells
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The Schwarz Alternating Method for Domain
Decomposition-Based Coupling

Extension to FOM*-ROM# and ROM-ROM Coupling

0 > r Qs

Numerical Examples \
> 2D Shallow Water Equations (SWE)
> 2D Burgers’ Equations

; 2
P ; W
. Schwarz “glue s ve ~_

» 2D Euler Equations

Q3 \
High-fidelity — \
--4- mesh-free \
model '/
(Physics3)

Ongoing/Future Work & Summary

*Full-Order Model. #Reduced Order Model.



‘ 3 Parametrized Hyperbolic Conservation Law Test Cases rFHressio

Nonlinear hyperbolic fluid systems in Pressio/Pressio demo-apps*
> 2D shallow water equations (SWE), vary Coriolis parameter (u)
» 2D viscous Burgers’ equations, vary diffusion parameter (D)
> 2D Euler equations, vary upper right pressure (p,) in IC

Wave/shock propagation across interfaces = high Kolmogorov n-width
FOM discretization: first-order CCFV method,
Consider decomposmons of 2 into four subdomains N,

000 025 050 075
elocity ssure
025 030 035 040 045 050

SW Burgers

Euler

300x300 mesh, BDF1

All results
predictive: 5
training points, 4
(interpolative)
testing points

oh  Oh Jhv
SWE R R
ot Ox Dy
(/ : I huv
r}:u} + — I (.-‘m + zghz) + ({;:i} = —uv
d(hv) fi{h-:.!u} d 1
. . I —gh” | =
o " “or oy ( T ) T i
Burgers’
{Jj_{_i E_FHT'“"‘ =D I}E_H_Fﬁ
ot 2\ Ox dy | dx? Oy
v + duv N ov? _ D v N 9%
ot Oz dy | or?  Oy?
Euler dp dpu  dpv 0
ot dx dy
{j{‘;};L} + ;_J (pu? + p) + rj({;uﬂ =0
ot dx Ay
dpv)  dpvu) 0 a
. : — (pv°+p) =0
af "o Tyl P
(pE d
(pE) [E+;J}:1}+—(E+p}w}:ﬂ
r}t r) dy

* https://pressio.github.io,
https://github.com/cwentland0/pressio-demoapps-schwarz



https://pressio.github.io/
https://github.com/cwentland0/pressio-demoapps-schwarz

Ghost cells I

. —
25 I Unsampled ROMs: Impact of Subdomain Overlap |
Key result: non-overlapping Schwarz iteration converges withouta - ——
degradation in accuracy when using Dirichlet-Dirichlet Schwarz BCs! 7
« This result is not true in general [Barnett et al., oo e :) "

2022; Mota et al., 2017; Mota et al. 2022]!

> Generally need alternating Dirichlet-
Neumann or Robin-Robin BCs for non-
overlapping Schwarz convergence.

» Dirichlet-Dirichlet works here due to implied
overlap introduced into otherwise non- : _
overlapping DD by ghost cells. x

IS
N
o
N
IS

* More Schwarz iterations are required for |
convergence with no overlap (as expected)

* Non-overlapping incurs negligible convergence
penalty for smooth problems (SWE) 'j | j

1
" _— T o )
1 P b L o At 1
—4.0 5 3.0 ] -2.0 15  -Lo o e-‘fo a-‘fﬂ u-"‘m o ot o 0500 @425 IS0 REVS 1000 1125 1250 1375 1500

* Non-overlapping Schwarz avoids duplicate | i C 5 S
Ca[cu[ations in Overlap region SWE, K = 80 Burgers’, K =200 Euler, K = 200

« It becomes more difficult to transmit shock
across non-overlapping interface (Burgers, Euler)

Average Schwarz iterat
Average Schwarz iterations

Average Schwarz iteratio

Red parameter values are predictive.



26 I Unsampled ROMs: Stabilization Effects

Key result: domain decomposition + Schwarz coupling can stabilize
an otherwise unstable monolithic solution

Pressure

0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.50

FOM

Monolithic, K = 150

Schwarz, K = 150, N, =0

Movie above: monolithic vs. decomposed ROM for Euler problem with p, = 1.375 (predictive regime).



27 ‘ Hyper-reduced ROMs: Impact of Boundary Sampling

Key result: given a fixed “budget” of sample mesh points, there is a (problem-dependent) optimal
number of sample mesh points to allocate to the Schwarz boundaries vs. the subdomain interiors.

':- : N, = fixed interval at
SR which Schwarz boundaries
are sampled

IR EE « For a fixed budget of
sample mesh points N,
boundary points draw
points away from interior
(figure left)

il - w . a* N *a
ry # ;gt b 4 s % 'r‘ # .

P gt = .
ORI Sl T, e - Rl I A

Water Height

1.000 1.002 1.004 1.006 1.008 1.010 1.012 1.014 1.016 1018 1.020 1.022 1.024

Schwarz HPROM, N, =5 Schwarz HPROM, N, =10

» Failure to deliberately
sample the Schwarz
boundary will also always
lead to instabilities (movie
left)

-4 -2 0 2 4



28 ‘ Hyper-reduced ROMs: Impact of Boundary Sampling
Key result: given a fixed “budget” of sample mesh points, there is a (problem-dependent) optimal

number of sample mesh points to allocate to the Schwarz boundaries vs. the subdomain interiors.

« There is a delicate balance of ensuring BC transmission together with an accurate interior solutions
* More extensive boundary sampling is required for problems with shocks (Burgers, Euler)

Water Height X-velocity Pressure
1o% LR 10" 4
10! I
. o 10! .
E E E: 10-1
E v =
¥ 10-2 — Ng=5 o 5
~ — Ng=10 L 1o~ ~
£ - = £ 10
5 — Ng= 30 = =
= 10 I =
= 10-3 <
) ‘\\____-____ _/“‘x____ - Nd _
10 — Ng =2
10-* — Ny=3
_ Q el 19 PN ) [l Al AT o
] . . . . . . . . . 0‘\‘_0 .\\\' (\:\- Lok ;{5" - [ & Q"JJ o \Ql -4 . .
W e 35 30 35 30 -15 -lo —65 oo N N LT RN L 10 5500 0625 0.750 0.875 1.000 L125 1250 1375 1.500
i D P
) _ — B0
SWE, N, = 0.5%N Burgers’, N, = 3.75%N Euler, Ny = 5%N

Red parameter values are predictive.



29 ‘ Hyper-reduced ROMs: Accuracy

Key result: predictive hyper-reduced ROMs
(HROMs) with non-overlapping Dirichlet-Dirichlet
Schwarz coupling are indistinguishable from
corresponding monolithic ROMs/FOMs.

Top row: SWE
Middle row: Burgers’
L4 N = N = Bottom row: Euler

Monolithic FOM Monolithic HROM Schwarz HROM



30 ‘ Hyper-reduced ROMs: Accuracy

Key result: Decomposed ROMs achieve lower error for the same trial basis size K
and have no artifacts at Schwarz boundaries.

Water Height Absolute Error
1072 10!

' 7

251

-5 -2.5 0 2.5
X

(a) SWE, p = —0.5,
M =80, N, =0.5% x N, N) = 10

) X-velocig Absolute Error

10-4 10-3 10-2
1.0

0 05 00 05 1.0

> 0.0 F

77100 05 0.0 0.5 1.0

Pressure Absolute Error
1072 10! 10°
1.0
0.75

0.5

0.25

0.75

0.25

0.0 *
0.0 0.25 0.5 0.75 1.0
X

(c) Euler, pgy = 1.375,
M =200, N, =5.0% X N, N, =2

Left figure: average absolute
spatial error fields for
representative monolithic (top)
and decomposed (bottom)
hyper-reduced ROM with no
overlap. Subdomain interfaces
are marked with dashed lines.




31 ‘ Hyper-reduced ROMs: Computational Cost

Relative £2 error

Key result: additive Schwarz enables speed-ups over corresponding
coupled Schwarz FOM and sometimes over monolithic FOM.

Hyper-reduced ROMs generally achieve cost savings w.r.t. corresponding coupled Schwarz FOM

Cost savings using Schwarz ROMs over corresponding monolithic FOM are possible for SWE problem

» Coupled Schwarz FOMs are often only viable options for Sandia analysts due to meshing challenges

> Next step: try to improve this via adaptive Schwarz ROMs

Speedup vs. Monolithic FOM
10° 10 10°

10—

L I I

Mono PROM, various kK
Monoe HPFROM, K = 80
Schwarz PROM, various K
Schwarz HPROM, K = 80

PR R RLL
[ ] ..‘
3tz 27

Lo

III]“ 10! 104 III]'
Speedup vs. Schwarz FOM

SWE

Relative £2 error

Speedup vs. Monolithic FOM
10! 1o° 10

104 e« DMono PROM, various K
o Mono HPFROM, K = 150
® Schwarz PROM, various K
10-1 e Schwarz HPROM, K = 150
LN )
-
ae e 1]
2 ® e o ®m O *ha »
10 se . "° ode Fo 00
e 0 g i 1 X .
L] 2 - -
o . wnlte
Rk
» ",
om el oo
L 1)
10-4 _ T T
1a° 10! 104

Red parameter values are predictive.

Speedup vs. Schwarz FOM

Burgers’

Relative £2 error

Speedup vs. Monolithic FOM
107! 107 10

104 e« DMono PROM, various K
e Mono HPFROM, K = 200
® Schwarz PROM, various K
10-1 o Schwarz HPROM, K = 200
[ 1] o= e o8
10-2 -';"': . .'l'l . o g
L N “ ‘
) - P
. b ol
. obe -
103
10-4 T :
109 10! 104

Speedup vs. Schwarz FOM

Euler
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The Schwarz Alternating Method for Domain
Decomposition-Based Coupling

Extension to FOM*-ROM# and ROM-ROM Coupling

0 > r Qs

Numerical Examples |
» 2D Shallow Water Equations (SWE)
» 2D Burgers’ Equations

« — — — Schwarz “glue”

» 2D Euler Equations

Q3 \
\ High-fidelity — \
\ --4- mesh-free \
model /
(Physics3)

Ongoing/Future Work & Summary

*Full-Order Model. #Reduced Order Model.
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New Project: Adaptive Hybrid modEls via domAin Decomposition

AHEAD
( ) .s. 1,
Goals (for solid mechanics exemplars): | oy
|
« Simplify meshing via Schwarz + DD
v V
« Extend Schwarz to non-intrusive « : '
ROMs (Operator Inference, NN) — ' ..
» Development of automated criteria to determine
appropriate use of less refined or reduced-order models
without sacrificing accuracy, enabling real-time
transitions between different model fidelities
ROM FOM
_>
ROM ROM

)
 £ORD

LABORATORY DIRECTED
RESEARCH & DEVELOPMENT
;"' Overlap =
P - 0 nQ,
/‘/ 2 A
4’ y N >
v L 3
T h a,
- 3 HFM
- i
i} & -~ /’/
" erlap \
A na,
‘ = 7
\
Example sample DD and ROM/HFM assignment.
ROM  HFM ROM  HFM ROM HFM Time
e — - >
nl I N 1 1 1
to it t; ts
Q, HFM HFM HFM Time
L I : et i >
tD tl tz t3

On-the-fly model switching in our DD workflow.



12 I New Project: Adaptive Hybrid modEls via domAin Decomposition

(AHEAD)

Goals (for solid mechanics exemplars):
« Simplify meshing via Schwarz + DD

« Extend Schwarz to non-intrusive «
ROMs (Operator Inference, NN) —

» Development of automated criteria to determine
appropriate use of less refined or reduced-order models
without sacrificing accuracy, enabling real-time
transitions between different model fidelities

FOM || FOM
. 08 —
FOM || FOM

LA Tlr
I,
| !
“ ¥
L],-
it
S
Qy
Q,

)

RESEARCH & DEVELOPMENT
ROM [ 1,

\
Y. — — = Schwarz “glue”
\
.
.

ROM HFM ROM HFM ROM HFEM Time

I 1 1 1
to Tt Ly t3

HFM HFM HFM Time

On-the-fly model switching in our DD workflow.
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Goals (for solid mechanics exemplars):
Simplify meshing via Schwarz + DD

New Project: Adaptive Hybrid modEls via domAin Decomposition

(AHEAD)

Extend Schwarz to non-intrusive
ROMs (Operator Inference, NN)

>

Development of automated criteria to determine
appropriate use of less refined or reduced-order models
without sacrificing accuracy, enabling real-time
transitions between different model fidelities

Pressure

0.00 015 0.30 045 0.60 0.75 0.90 1.05 1.20 1.35 1.50

pa = 1375

ROM | ROM
FOM | ROM

Ll T,r

o - ey

L
-

L,
!

4

- —

1
]

[

%
£ORD

LABORATORY DIRECTED
RESEARCH & DEVELOPMENT

HFM HFM HFM Time

On-the-fly model switching in our DD workflow.
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Summary and Ongoing/Future Work

Summary:

« Schwarz has been demonstrated for coupling of FOMs and (H)ROMs

~%)

N\
LORD Sressio

nnnnnn RY DIRECTED

« Computational gains can be achieved by coupling HROMs and using the additive Schwarz variant
* Interesting new results regarding interface sampling & non-overlapping transmission BCs for CCFV

Ongoing & future work:

Extension to other applications (fasteners, laser welds)

Rigorous analysis of why Dirichlet-Dirichlet BC “work”
when employing non-overlapping Schwarz with
discretizations that employ ghost cells

Learning of “optimal” transmission conditions to ensure
structure preservation

Extension of Schwarz to enabling coupling of non-intrusive
ROMs (e.g., OpInf, Neural Networks)

Development of automated criteria to determine
appropriate use of less refined or reduced-order models
without sacrificing accuracy, enabling real-time transitions
between different model fidelities — New project: AHEAD LDRD

Q

ROM FOM ROM  FOM ROM FOM Time

u(x,ty_1) u(x, ty) u(x, tyyq)

FOM FOM FOM Time

u(x, ty_q) u(x, ty) u(X, tyyq)

* https://pressio.github.io



https://pressio.github.io/
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40 ‘ 2D Inviscid Burgers Equation

Popular analog for fluid problems where shocks are possible, and
particularly difficult for conventional projection-based ROMs

ou 1(ow?) 0J(uv)
5?*5( *

0x dy
v 10 0 (v?
v 1(00w) 0w\ _
gt 2\ Ox dy

u(0,y,t; ) = 1y
u(x,y,0) =v(x,y,0)=1

) = 0.02 exp(uyx)

Problem setup:
« O =(0,100)2, ¢t € [0,25]

« Two parameters u = (uq, ;). Training: uniform sampling

100

of u; X u, = [4.25,5.50] x [0.015,0.03] by a 3 x 3 grid.
Testing: query unsampled point u = [4.75,0.02]

FOM discretization:

» Spatial discretization given by a Godunov-type scheme with N =

250 elements in each dimension

« Implicit trapezoidal method with fixed At

0.05

t=0.0

t=06.2

t =125 t =18.8

75 1
50 -
25 1

25 50 75

Figure above: solution of u
component at various times

25 50 75




. | Schwarz Coupling Details

Choice of domain decomposition

* Overlapping DD of Q into 4 subdomains coupled via multiplicative Schwarz
« Solution in Q, is most difficult to capture by ROM

Snapshot collection and reduced basis construction

» Single-domain FOM on Q used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries
« BCs imposed strongly via Method 1 of [Gunzburger et al., 2007] at indices ip;,
q(t) =~ q+ Pq(t)
» POD modes made to satisfy homogeneous DBCs: ®(ipi.,:) =0
» BCs imposed by modifying q : q(ipir) < X4
Choice of hyper-reduction

« Energy Conserving Sampling & Weighting (ECSW) method for hyper-reduction
« All points on Schwarz boundaries are included in the sample mesh

0 X 190

Figure above: 4 subdomain
overlapping DD

Figure above:
ECSW augmented
reduced mesh



. | All-ROM Coupling

. 95% Singular Value (SV) Energy Retention 99% Singular Value (SV) Energy Retention
o
% 5.0
e I
: QZ ;’2 | _ _
° O = 0 20 40 60 80 100 0 20 40 60 80 100
PY Q4 x xr
>
1 SD S5
=
I
\i _ ——————— )
=70 20 40 60 80 100 0 20 40 60 80 100
Y Y

. . 95% SV Energy 99% SV Energy
Method converges in only 3

Schwarz iterations per M MSE (%) CPUtime(s) M  MSE (%) CPUtime (s) 0 . 100
- Errors O(1%) or less Q, 44 | 1.2 56 120 | 0.18 216
Q0 24 | 1.4 43 60 |0.16 89
« 1.47x speedup over all-FOM :
coupling for 95% SV energy { 2 U0 o o | 02D Ll
retention case fotat 700




FOM-HROM-HROM-HROM Coupling

43
s
2 5.0
L
!
= 2.5
\%'{ _ ° Ql
=
= 0 20 40 60 80 100 2
xr ® QS
=
P 5 [ ) Q4
S
S 1SD
I
= B ]
\_g 0 T T T T T T
S
0 20 40 60 80 100
y

« FOM in Q, as this is “hardest” subdomain for ROM

« HROMs in Q,, Q5, Q, capture 99% snapshot energy

* Method converges in 3 Schwarz iterations per controller time-step
* Errors 0(0.1%) with 0 error in Q,

« 2.26x speedup achieved over all-FOM coupling

Further speedups possible via code optimizations,

additive Schwarz and reduction of # sample mesh points.

99% SV Energy
Subdomains

M  MSE (%) CPU time (s)
Q, - (0.0 95
Q, 120 | 0.26 26
Q5 60 0.43 17
Q, 66 & 21
Total

» ain 1 PROM Reduced Mesh
40 60 80 100 120 140

Subdomain 2: PROM Reduced Mesh
0 100 12(

0 20 40 60 8




44 QOutline

The Schwarz Alternating Method for Domain
Decomposition-Based Coupling

Extension to FOM*-ROM# and ROM-ROM Coupling

0 > r Qs

Numerical Examples \

» 2D Burgers Equation
> 2D Shallow Water Equations

« — — — Schwarz “glue”

» Teaser: 2D Euler Equations Riemann Problem

Q3 \
\ High-fidelity — \
\ --4- mesh-free \
model /
(Physics3)

Summary & Future Work

*Full-Order Model. #Reduced Order Model.



45 ‘ 2D Shallow Water Equations (SWE)

I
Hyperbolic PDEs modeling wave propagation below a pressure
surface in a fluid (e.g., atmosphere, ocean).
dh Jd(hu) Jd(hv) _ 0
I

N

o

Wa

ot T Tox oy 4 e .
a(ah:) + aax <hu2 + %gh2> + Oa_y (huv) = —uw %
200 1 2wy + (o + 507 =
Problem setup: N

« O =(-55)?% t €]0,10], Gaussian initial condition

« Coriolis parameter u € {—4,—3,—2,—1,0} for

training, and u € {—3.5,—2.5, —1.5, —0.5} for testing Figure above: FOM solutions to SWE for u = —0.5

(left) and u = —3.5 (right).
FOM discretization: |
« Spatial discretization given by a first-order cell-centered finite volume discretization with N = 300 elements

in each dimension

« Implicit first order temporal discretization: backward Euler with fixed At = 0.01
* Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

E’ressio



https://github.com/Pressio/pressio-demoapps

. | Schwarz Coupling Details

Green: different from Burgers’ problem

Choice of domain decomposition

 Non-overlapping DD of Q into 4 subdomains coupled via additive Schwarz
» OpenMP parallelism with 1 thread/subdomain

Fi ight: -
« AllI-ROM or All-HROM coupling via Pressio* Igure right. non

Snapshot collection and reduced basis construction cells creating overlap

» Single-domain FOM on Q used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

overlapping DD w/ ghost

’Ff’ressio

i 1
I

8

« BCs are imposed approximately by fictitious ghost cell states J

» Implementing Neumann and Robin BCs is challenging

* Ghost cells introduce some overlap even with non-overlapping DD

» = Dirichlet-Dirichlet non-overlapping Schwarz is stable/convergent!

Choice of hyper-reduction m

« Collocation for hyper-reduction: min residual at small subset DOFs

[

]

« Assume fixed budget of sample mesh points at Schwarz boundaries

*https://github.com/Pressio/pressio-demoapps

Figure above: sample mesh
(yellow) and stencil (white) cells

Ghost
cells


https://github.com/Pressio/pressio-demoapps

4 ‘ Schwarz All-ROM Domain Overlap Study

Study of Schwarz convergence for all-ROM coupling as a function of N, :=
cell width of overlap region (not including ghost cells).

Water Height
1.000 1.002 1.004 1.006 1.008 1.010 1.012 1.014 1.016 1.018 1.020 1.022 l.OZT
FOM Schwarz PROM, N, = 0 Schwarz PROM, N, = 20

2
0

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

X

Movie above: FOM (left), 4 subdomain ROM coupled via non-overlapping
Schwarz (middle), and 4 subdomain ROM coupled via overlapping Schwarz
(right) for predictive SWE problem with u = —0.5. All ROMs have K =
80 POD modes.

Schwarz iterations decrease (very roughly) with
NJ-25 (figure, right) whereas evaluating r(q) scales
with N2
» = there is no reason not to do non-
overlapping coupling for this problem

Relative £2 error

(=
o
w

Average Schwarz iterations

 Dirichlet-Dirichlet coupling with no-overlap

(N,= 0) performs well with no convergence [
issues (movie, left) and errors comparable to
Dirichlet-Dirichlet coupling with overlap ]

(figure below, left)

Water Height

=
o
©

— K=20,N, =0
— K=20,N, =10
— K=20,N, =20
-— K=60,No=0
-- K=60,N, =10
== K=60,N, =20

W
Y]
v

[
o
|
w
o
o

=

o
]
~

w
-
w

w
=
=]

10744 Zo===-————__-zzZSSSSsoCIISSSSSsassscc- -essI;

i

10-5 L, . i i i . i . i 3.05 \//—
40 -35 -30 -25 -20 -15 -10 -05 00 30 35 o0 35 B0 it o 35 oo
H u

Figures above: relative error and average # Schwarz iterations as a
function of u and N,. Black u: training, red u: testing.



. | Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

» Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Height

1.000 1.002 1.004 1.006 1.008 1.010 1012 1014 1.016 1.018 1.020 1.022 1.024

FOM Schwarz HPROM, N, =5 Schwarz HPROM, N, =10

-
.
.
. 3
- -
L1* .t * * .t
Y -
o.. ™ Hd ... *
tre o}
.
5 0 e Ca
.%. .
+
.
L]

.
-
oh’

-4 -2 0 2 4

Figure above: example sample

Movie above: FOM (left), all HROM with N, = 5% (middle) and all HROM with N, = 10% mesh with sampling rate N, = 10%

(left). ROMs have K = 100 modes and N, = 0.5%N sample mesh points.

* Including too many Schwarz boundary points (N,) in sample mesh given fixed budget of N; sample mesh
points may lead to too few sample mesh points in interior

« For SWE problem, we can get away with ~10% boundary sampling (movie above, right-most frame)



. | Coupled HROM Performance

Water Height Water Height, u = -0.5

—a— Mono PROM, various K
—e— Mono HPROM, K = 80
—8— Schwarz PROM, various K

109 -

10-1 - —&— Schwarz HPROM, K = 80
| - : | - 1{}—3

o 2

(]

™ 102 . ~

~ Solid:  Ny= 0.5%N P s
v >

2 Dashed: N, = 1%N = /
© 103 o

“ & 10

o

=1
_—— - e e [
kT ————

a0 35 30 35 30 -15 —10 65 00 0 e e
u Speedup vs. Monolithic FOM
« For a fixed ROM dimension, Schwarz delivers lower error and comparable cost!

* There are noticeable cost savings relative to monolithic FOM!
» Accuracy similar for predictive u (red) and non-predictive u (black) cases.



s0 | Teaser: 2D Euler Equations Riemann Problem IS cci
p pu pv T ——————— —
i pu i puz + p i puv B FOM Monolithic PROM chwarz , No =
ac\ pv | Tax|  puv Yol pv2+p |T 0
PE (E +pu (E +p)v
1 2 2
p=—-D(PE—-5pu”+v7)
Problem setup: i
« O =1(0,1)?t€[0,0.8], homogeneous Neumann BCs Preliminary results:
* Fixp; =15, u; =v; =0, p; =0.029 « Schwarz can stabilize unstable monolithic ROM for
« Vary p,;; IC from compatibility conditions® fixed dimension K (above)

» Training: p; € [1.0,1.25,1.5,1.75,2.0]

) » Since shock traverses all parts of domain, achievin
> Testing: p, € [1.125,1.375,1.625,1.875] P g

speedups with Schwarz is more difficult

FOM discretization:

« Spatial discretization given by a first-order cell-centered finite volume discretization with N = 300or N =
N = 100 elements in each dimension
« Implicit first order temporal discretization: backward Euler with fixed At = 0.005

* Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps) *Schulz-Rinne, 1993.



https://github.com/Pressio/pressio-demoapps

. | Summary

The Schwarz alternating method has been developed for concurrent
multi-scale coupling of conventional and data-driven models.

© Coupling is concurrent (two-way).
© Ease of implementation into existing massively-parallel HPC codes.

© “Plug-and-play” framework: simplifies task of meshing complex geometries!

© Ability to couple regions with different non-conformal meshes, different element types
and different levels of refinement.

© Ability to use different solvers (including ROM/FOM) and time-integrators in different
regions.

© Scalable, fast, robust on real engineering problems

© Coupling does not introduce nonphysical artifacts.

© Theoretical convergence properties/guarantees.



52 ‘ Bonus: PINN-PINN and PINN-FOM coupling Will Snyder

Neural Network Summer Intern
LS TTTTTTTTTTTTT T O N Virginia Tech

P e e e e e e e e e e e

|'
i PDE loss £,.(6) l Mim:mize I
i X BC loss £,(6) —é)—> Loss L(6) —E—> 6 = arg;nin L) |
i Input Data loss £,4(0) I i
| 4 |
! Loss ) |
\ . L) = ar Li(0) + apLp(6) + agLy(6)

N Hidden Layers ,/ Focus thus far

N e e e e e e e e Em e e Em Em Em Em EE EE EE EE EE E Em Em Em Em EE EE EE e e Em Em Em Em e e -

Scenario 1: use Schwarz to train
subdomain PINNs (offline)

Goal: investigate the use of the Schwarz alternating method as a

means to couple Physics-Informed Neural Networks (PINNs) |  Scenario 2: use Schwarz to
couple pre-trained subdomain

Related work: Li et al., 2019, Li et al., 2020, Wang et al., 2022. PINNs/NNs (online)




53 1 Bonus: PINN-PINN coupling

),
1D steady advection-diffusion equation on Q. = [0,1]: , A \
0 V2 41 1
Uy — VU, =1, u(0)=u(1)=0 : : : :

\ J

|
PINNs are notoriously difficult to train O,
for higher Peclet numbers! Overlapping DD: Q. = Q, U Q, with boundary 9Q = {0,1}

I—> Can Schwarz help?
Ly;(8) = MSE(—VV2NNgq (x,0) + V,NNq,(x,6) — 1)

£5,:(6) = MSE(NNq, (99, 6)) + MSE (NNq,(¥;, 8) — NNa, (v:,6)) ]

Schwarz PINN training algorithm:

Loop over subdomains Q; until convergence of Schwarz method
Train PINN in Q; with loss £;(8) = aL,;(8) + BL, ;(6) +vLy,;(6)
Communicate Dirichlet data between neighboring subdomains
Update boundary data on y; from neighboring subdomains
If strong enforcement of Dirichlet BC (SDBC), set fi,(x,8) = NNg (x,6)
If weak enforcement of Dirichlet BC (WDBC), set § = 0 and @,(x, 8) = v(x)NNq (x, 6) + lp(X)ﬁQj()/j, 6)
where v(x) is chosen s.t. v(0) = v(y;) = v(1) = 0 and Y(x) is chosen s.t. v(y;) =1




54 ‘ Bonus: PINN-PINN coupling

Schwarz iteration 1; Pe = 250

1.0 1 -
PO
08{ WDBC Pl II
”’ 1
0.6~ 7 i
x e :
S 0.4 4 taal !
”” !
0.2 A PPl '
4”’ /
- 1
004 - -
0.0 0.2 0.4 0.6 0.8 1.0
X
Schwarz iteration 1; Pe = 10
0.6 - e ™~
SDBC on y; e \
i \
,/’ \\
— 0.4 ,/’ \
-ES ”’ \\
> e \
rd
0.2 - el ‘\‘
’I,’ \\
”
004 -~ e \
0.0 0.2 0.4 0.6 0.8 1.0

Schwarz iteration 1; Pe = 250

1.0 7 -

f”’ \|

0.8 1 SDBC on 01 JPtias |

- |

__0.6- -7 i

X == :

‘-3’ 04 N ’a"’ :

””’ !

- |

0.2 7 »"’ / !

== :

0.0 = /
0.0 0.2 0.4 0.6 0.8 1.0

* How Dirichlet boundary conditions are handled
has a large impact on PINN convergence

« Convergence not improved in general with
increasing overlap

* Increasing # subdomains in general will increase
CPU time




55 ‘ Bonus: PINN-PINN coupling

Pe =100

0
0 10 '
- 0
=
o A
-
T 107} :
b
e
o
E .
& 0
N 1072} :
% 4 v LA A4
E <
<
107 -
10
CPU time (s)

2 (1, no snapshots, WDBC (unconverged)
2 (1, no snapshots, SDBC

T OA P40 AD4A4O0

APpJ O AN

210,
210,
30,
311,
311,
311,
4,
4,
4,
4,
5 {2,
5 {2,
5 {2,
5 1,

snapshots, WDBC (unconverged)
snapshots, SDBC

no snapshots, WDBC (unconverged)
no snapshots, SDBC

snapshots, WDBC

snapshots SDBC (unconverged)

no snapshots, WDBC (unconverged)
no snapshots, SDBC (unconverged)
snapshots, WDBC

snapshots SDBC

no snapshots, WDBC (unconverged)
no snapshots, SDBC (unconverged)
snapshots, WDBC

snapshots, SDBC

Using SDBCs and data loss helps with
PINN/NN convergence and accuracy



56 | Bonus: PINN-FOM coupling

Schwarz iteration 1: Pe = 1000000

1.0 - "
0 L - :
08 7] ”p” !
06 PINN subdomain /’,w
X _--
= -~ FOM subdomain
= 0.4 - -
0.2
0.0 A
0.0 0.2 0.4 0.6 0.8 1.0
X

« PINN-FOM coupling gives rapid PINN convergence for arbitrarily high Peclet numbers
« PINN-FOM couplings works with both WDBC and SDBC configurations



- Theoretical Foundation

Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

= S.L.Sobolev (1936): posed Schwarz method for linear elasticity in
variational form and proved method’s convergence by proposing a
convergent sequence of energy functionals.

= S.G. Mikhlin (1951): proved convergence of Schwarz method for general
linear elliptic PDEs.

= P.-L. Lions (1988): studied convergence of Schwarz for nonlinear monotone

. .. : . 5.G. Mikhlin
elliptic problems using max principle. (1908 — 1390)
= A. Mota, I. Tezaur, C. Alleman (2017): proved convergence of the
alternating Schwarz method for finite deformation quasi-static nonlinear
PDEs (with energy functional @[¢]) with a geometric convergence rate. P.- L. Lions (1356-)

cb[(p]sz(F,Z)dV—J B-pdv
B B
V-P+B=0

A. Mota, |. Tezaur, C. Alleman




A Mota, I, Tecaur, . Alleman - Method in Solid Mechanics

2 Formulation of the Schwarz Alternating Method

We start by definng the standard fiite deformation variational formulation o establsh noation before
presenting the formalation of the coupling methac,

21 Variational Formulation on a Single Domain

c cre = p(X) 0 B,
X € 0 Asame it he boundy o body i 0 = 00 wilh i el N, where 3
s a displacement boundary. 32 is a racton boundary, ind 92 1 372 = 0. The prescribed boundary

Dirichlet g0 B
Neumann boundry condons e T 502 - . Lo 7 = rds b thedforation
also RB ¢ 1 - 75 be the body force, with I the mass densiy i the reference configuration. Furtermore.

i e vy o

W= [z av- / [ e
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where P = 04/0F L Kirehhoff s, The Evler L

the varitional statement (4) is

‘ Convergence Proof*

A Mota, . Tezau, C. Allemen

Fgwer: Lo

thatisi = Land] = 2if nisodd, andi = 2and] = Lif niseven. Introckce the ollowing dafniions for
each subdomein |

+ Closre Ty= B[ @

+ Diichiet boundary: @ = @ &
+ Neumann boundery: @ = @ B\
+ Setwarz boundary: T = @9\ -
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Theorem 1. Assume that the energy functional @[] satisfies properties 1-5 above. Consider the Schwarz alternating
method of Section 2 defined by (9)—(13) and its equivalent form (39). Then
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(b) The sequence {@™ } defined in (39) converges to the minimizer @ of ®[p] in S.
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B Analytic Solution for Linear-Elastic Singular Bar

As reference, herein e provide the soluion of the singular bar of Section 4.3 for linear clstcity. The
cquilibiom equaion is

P = a(X)A(X) = const.. #(X) = Be(X). e(X) = u'(X), AX)

)

B

CMAME 319 (2017), 19-51.



Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory
59

* Like for quasistatics, dynamic alternating Schwarz method converges provided each single-domain
problem is well-posed and overlap region is non-empty, under some conditions on At.

» Well-posedness for the dynamic problem requires that action functional S[¢] =

I, I, L (@,@)dVdt be strictly convex or strictly concave, where L(¢, @) :=T(¢) + V(¢) is the
Lagrangian.

> This is studied by looking at its second variation §2S[¢},]

 We can show assuming a Newmark time-integration scheme that for the fully-discrete problem:

2

(BAL)?

625[(ph]=le M—K]x
> §2S[¢@}] can always be made positive by choosing a sufficiently small At

» Numerical experiments reveal that At requirements for stability/accuracy typically lead to
automatic satisfaction of this bound.



oo I Energy-Conserving Sampling and Weighting (ECSW)

* Project-then-approximate paradigm (as opposed to approximate-then-project)

1 (qx, t) = WTr(ii,t)
= z WTLLr, (L, +1i,t)
ee&

e L, €{0,1}4*N where d, is the number of degrees of freedom associated with each mesh element (this is
in the context of meshes used in first-order hyperbolic problems where there are N, mesh elements)

e L.+ € {0,1}%*N selects degrees of freedom necessary for flux reconstruction

« Equality can be relaxed

AN NLAS LA
// // // 4 ! Augmented reduced mesh: © represents a
LA LA L/ | L selected node attached to a selected
/, )4 // // element; and ® represents an added node to
AANAANILANL enable the full representation of the
" AT A 1/ computational stencil at the selected
1 AL node/element
VaaVaaVaaVas
L
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ECSW: Generating the Reduced Mesh and Weights

Using a subset of the same snapshots u;,i € 1, ...,n, used to generate the state basis I/, we can train the
reduced mesh

Snapshots are first projected onto their associated basis and then reconstructed
cse = WTLLr, (Le+ (uref +VVT(us — uref)) , t) € R"
d, =n,(i,t) € RY, s=1,..,n,
We can then form the system
€11 - C1n, d4
Cnp1 - CnpNg dny,
Where €& = d, & € RNe, & = 1 must be the solution
Further relax the equality to yield non-negative least-squares problem:
§ = arg min,cgn||Cx — d||, subjectto x = 0

Solve the above optimization problem using a non-negative least squares solver with an early
termination condition to promote sparsity of the vector ¢
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