

Towards adaptive hybrid models via domain decomposition and the Schwarz alternating method

Irina Tezaur¹, Chris Wentland¹, Francesco Rizzi², Joshua Barnett³, Alejandro Mota¹

¹Sandia National Laboratories, ²NexGen Analytics, ³Cadence Design Systems

2025 Joint Mathematics Meetings (JMM 2025) Seattle, WA. Jan. 8-11, 2025 SAND2024-16987C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-NA0003525.

² Motivation: Multi-scale & Multi-physics Coupling

There exist established **rigorous mathematical theories** for **coupling** multi-scale and multi-physics components based on **traditional discretization methods** ("Full Order Models" or FOMs).

Complex System Model

- PDEs, ODEs
- Nonlocal integral
- Classical DFT
- Atomistic, ...

Traditional Methods

• Mesh-based (FE, FV, FD)

 N_{2}

- Meshless (SPH, MLS)
- Implicit, explicit

 N_{I}

 N_3

• Eulerian, Lagrangian...

Coupled Numerical Model

Monolithic (Lagrange multipliers)

 N_{4}

 N_{*}

- Partitioned (loose) coupling
- Iterative (Schwarz, optimization)

Motivation: Multi-scale & Multi-physics Coupling

 \bigcirc

There exist established **rigorous mathematical theories** for **coupling** multi-scale and multi-physics components based on **traditional discretization methods** ("Full Order Models" or FOMs).

Complex System Model

- PDEs, ODEs
- Nonlocal integral
- Classical DFT
- Atomistic, ...

N_1 N_2 N_4 N_3 N_5

Traditional Methods

- Mesh-based (FE, FV, FD)
- Meshless (SPH, MLS)
- Implicit, explicit
- Eulerian, Lagrangian, ...

Coupled Numerical Model

- Monolithic (Lagrange multipliers)
- Partitioned (loose) coupling
- Iterative (Schwarz, optimization)

- PINNs
- Neural ODEs
- Projection-based ROMs, ...

Unfortunately, existing algorithmic and software infrastructures are **ill-equipped** to handle plug-and-play integration of **non-traditional**, data-driven models!

- Ensure well-posedness & physical consistency of resulting heterogeneous models.
- Solve such heterogeneous models efficiently.

Three coupling methods:

- Alternating Schwarz-based coupling This talk.
- **Optimization-based coupling**
- Coupling via generalized mortar methods

Flexible Heterogeneous Numerical Methods (fHNM) and Multi-faceted

4 Mathematics for Predictive Digital Twins (M2dt) Projects

Principal research objective:

• Discover mathematical principles guiding the assembly of standard and data-driven numerical models in stable, accurate and physically consistent ways.

Principal research goals:

"Mix-and-match" standard and data-driven models from three-classes

 \succ Class A: projection-based reduced order models (ROMs) This talk.

Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)

> Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

ML Model ROM (Physics 2) Physics 1) F1 Schwarz "glue' Overlap $\Omega_4 \cap \Omega_2$ Ω_3 Ω_1 High-fidelity Overlap FEM model $\Omega_2 \cap \Omega_3$ (Physics 2) Ω

 Ω_3

High-fidelity mesh-free

model

(Physics 3)

Office of Science

- 5 Outline
- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM[#] and ROM-ROM Coupling
- Numerical Examples
 - > 2D Shallow Water Equations (SWE)
 - > 2D Burgers' Equations
 - > 2D Euler Equations
- Ongoing/Future Work & Summary

h

*Full-Order Model. #Reduced Order Model.

- 6 Outline
- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM[#] and ROM-ROM Coupling
- Numerical Examples
 - > 2D Shallow Water Equations (SWE)
 - > 2D Burgers' Equations
 - > 2D Euler Equations
- Ongoing/Future Work & Summary

ng $\Omega_1 \quad \Gamma_2$

 Γ_1

Г

 Ω_2

 Ω_2

 $\partial \Omega$

 $\partial \Omega$

- Schwarz Alternating Method for Domain Decomposition 7
- Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Initialize:

- Solve PDE by any method on Ω_1 w/ initial guess for transmission BCs on Γ_1 . *Iterate until convergence:*
- Solve PDE by any method on Ω_2 w/ transmission BCs on Γ_2 based on values just obtained for Ω_1 .
- Solve PDE by any method on Ω_1 w/ transmission BCs on Γ_1 based on values just obtained for Ω_2 .

 Ω_2

 $\partial\Omega$

Schwarz alternating method most commonly used as a *preconditioner* for Krylov iterative methods ۲ to solve linear algebraic equations.

Idea behind this work: using the Schwarz alternating method as a discretization *method* for solving multi-scale or multi-physics partial differential equations (PDEs).

⁸ How We Use the Schwarz Alternating Method

Spatial Coupling via (Multiplicative) Alternating Schwarz

Overlapping Domain Decomposition

 $\begin{cases} N\left(\boldsymbol{u}_{1}^{(n+1)}\right) = f \text{, in }\Omega_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{g}, \text{ on }\partial\Omega_{1}\backslash\Gamma_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{u}_{2}^{(n)} \text{ on }\Gamma_{1} \end{cases}$ $\begin{cases} N\left(\boldsymbol{u}_{2}^{(n+1)}\right) = f \text{, in }\Omega_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{g}, \text{ on }\partial\Omega_{2}\backslash\Gamma_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{u}_{1}^{(n+1)} \text{ on }\Gamma_{2} \end{cases}$

Model PDE: $\begin{cases} N(\boldsymbol{u}) = \boldsymbol{f}, & \text{in } \Omega\\ \boldsymbol{u} = \boldsymbol{g}, & \text{on } \partial \Omega \end{cases}$

• Dirichlet-Dirichlet transmission BCs [Schwarz 1870; Lions 1988; Mota *et al*. 2017; Mota *et al*. 2022]

Non-overlapping Domain Decomposition

$$\begin{cases} N\left(\boldsymbol{u}_{1}^{(n+1)}\right) = f, & \text{in } \Omega_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{g}, & \text{on } \partial \Omega_{1} \setminus \Gamma \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{\lambda}_{n+1}, & \text{on } \Gamma \end{cases}$$
$$\begin{cases} N\left(\boldsymbol{u}_{2}^{(n+1)}\right) = f, & \text{in } \Omega_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{g}, & \text{on } \partial \Omega_{2} \setminus \Gamma \\ \nabla \boldsymbol{u}_{2}^{(n+1)} \cdot \boldsymbol{n} = \nabla \boldsymbol{u}_{1}^{(n+1)} \cdot \boldsymbol{n}, \text{ on } \Gamma \end{cases}$$
$$\boldsymbol{\lambda}_{n+1} = \theta \boldsymbol{u}_{2}^{(n)} + (1 - \theta) \boldsymbol{\lambda}_{n}, \text{ on } \Gamma, \text{ for } n \geq 1 \end{cases}$$

- Relevant for multi-material and multiphysics coupling
- Alternating Dirichlet-Neumann transmission BCs [Zanolli *et al.* 1987]
- Robin-Robin transmission BCs also lead to convergence [Lions 1990]
- $\theta \in [0,1]$: relaxation parameter (can help convergence)

10 Additional Parallelism via Additive Schwarz

Multiplicative Overlapping Schwarz

$$\begin{cases} N\left(\boldsymbol{u}_{1}^{(n+1)}\right) = f \text{, in }\Omega_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{g}, \text{ on }\partial\Omega_{1}\backslash\Gamma_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{u}_{2}^{(n)} \text{ on }\Gamma_{1} \end{cases}$$
$$\begin{cases} N\left(\boldsymbol{u}_{2}^{(n+1)}\right) = f \text{, in }\Omega_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{g}, \text{ on }\partial\Omega_{2}\backslash\Gamma_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{u}_{1}^{(n+1)} \text{ on }\Gamma_{2} \end{cases}$$

Additive Overlapping Schwarz

 $\begin{cases} N\left(\boldsymbol{u}_{1}^{(n+1)}\right) = f \text{, in }\Omega_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{g}, \text{ on }\partial\Omega_{1}\backslash\Gamma_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{u}_{2}^{(n)} \text{ on }\Gamma_{1} \end{cases}$ $\begin{cases} N\left(\boldsymbol{u}_{2}^{(n+1)}\right) = f \text{, in }\Omega_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{g}, \text{ on }\partial\Omega_{2}\backslash\Gamma_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{u}_{1}^{(n)} \text{ on }\Gamma_{2} \end{cases}$

Model PDE: $\begin{cases} N(u) = f, & \text{in } \Omega \\ u = g, & \text{on } \partial \Omega \end{cases}$

- Multiplicative Schwarz: solves subdomain problems sequentially (in serial)
- Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later
 - > Typically requires a few more **Schwarz iterations**, but does not degrade **accuracy**
 - Parallelism helps balance additional cost due to Schwarz iterations
 - > Applicable to both **overlapping** and **non-overlapping** Schwarz

<u>Step 0</u>: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for Ω_1

Time integrator for Ω_2

Model PDE:	$\dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f},$	in \varOmega
	$\left\{ \boldsymbol{u}(\boldsymbol{x},t)=\boldsymbol{g}(t),\right.$	on $\partial \Omega$
	$\left(\boldsymbol{u}(\boldsymbol{x},0)=\boldsymbol{u}_{0}\right) $	in \varOmega

Controller time stepper

Time integrator for Ω_1

Time integrator for Ω_2

Step 0: Initialize i = 0 (controller time index).

<u>Step 1</u>: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

Model PDE:	$\begin{cases} \dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f}, \\ \boldsymbol{u}(\boldsymbol{x}, t) = \boldsymbol{g}(t), \\ \boldsymbol{u}(\boldsymbol{x}, 0) = \boldsymbol{u}_0, \end{cases}$	in Ω on $\partial \Omega$ in Ω
------------	---	--

Step 0: Initialize i = 0 (controller time index).

<u>Step 1</u>: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

<u>Step 2</u>: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ_2 at times $T_i + n\Delta t_2$.

Model PDE:	$\dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f},$	in Ω
	$\left\{ u(x,t) = g(t), \right.$	on $\partial \Omega$
	$(\boldsymbol{u}(\boldsymbol{x},0)=\boldsymbol{u}_0,$	in \varOmega

Controller time stepper

Time integrator for Ω_1

Time integrator for Ω_2

<u>Step 0</u>: Initialize i = 0 (controller time index).

<u>Step 1</u>: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

<u>Step 2</u>: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ_2 at times $T_i + n\Delta t_2$.

<u>Step 3</u>: Check for convergence at time T_{i+1} .

Model PDE:	$\dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f},$	in \varOmega
	$\left\{ u(x,t) = g(t), \right.$	on $\partial \Omega$
	$(\boldsymbol{u}(\boldsymbol{x},0)=\boldsymbol{u}_0,$	in $arOmega$

Controller time stepper

Time integrator for Ω_1

Time integrator for \varOmega_2

<u>Step 0</u>: Initialize i = 0 (controller time index).

<u>Step 1</u>: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

<u>Step 2</u>: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ_2 at times $T_i + n\Delta t_2$.

<u>Step 3</u>: Check for convergence at time T_{i+1} .

If unconverged, return to Step 1.

Model PDE:	$\begin{cases} \dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f}, \\ \boldsymbol{u}(\boldsymbol{x}, t) = \boldsymbol{g}(t), \end{cases}$	in Ω on $\partial \Omega$	
	$(\boldsymbol{u}(\boldsymbol{x},0)=\boldsymbol{u}_0,$	in Ω	

¹⁶ Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

<u>Step 1</u>: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

<u>Step 2</u>: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ_2 at times $T_i + n\Delta t_2$.

<u>Step 3</u>: Check for convergence at time T_{i+1} .

- If unconverged, return to Step 1.
- > If converged, set i = i + 1 and return to Step 1.

Model PDE:	$\begin{cases} \dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f}, \\ \boldsymbol{u}(\boldsymbol{x}, t) = \boldsymbol{g}(t), \\ \boldsymbol{u}(\boldsymbol{x}, 0) = \boldsymbol{u}_0, \end{cases}$	in Ω on $\partial \Omega$ in Ω
------------	---	--

different time steps within each domain!

Time-stepping procedure is **equivalent** to doing Schwarz on **space-time domain** [Mota *et al.* 2022].

<u>Step 0</u>: Initialize i = 0 (controller time index).

<u>Step 1</u>: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

<u>Step 2</u>: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ_2 at times $T_i + n\Delta t_2$.

<u>Step 3</u>: Check for convergence at time T_{i+1} .

- If unconverged, return to Step 1.
- > If converged, set i = i + 1 and return to Step 1.

Model PDE:	$\begin{cases} \dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f}, \\ \boldsymbol{u}(\boldsymbol{x}, t) = \boldsymbol{g}(t), \\ \boldsymbol{u}(\boldsymbol{x}, 0) = \boldsymbol{u}_0, \end{cases}$	in Ω on $\partial \Omega$ in Ω
------------	---	--

Div $\boldsymbol{P} + \rho_0 \boldsymbol{B} = \boldsymbol{0}$ in Ω Quasistatic: Div $\boldsymbol{P} + \rho_0 \boldsymbol{B} = \rho_0 \boldsymbol{\ddot{\varphi}}$ in $\Omega \times I$ Dynamic:

- *Ease of implementation* into existing massively-parallel HPC codes.
- Scalable, fast, robust (we target real engineering • problems, e.g., analyses involving failure of bolted components!).
- Coupling does not introduce *nonphysical artifacts*.
- *Theoretical* convergence properties/guarantees¹. ullet
- "Plug-and-play" framework:
 - > Ability to couple regions with *different non-conformal meshes*, *different element types* and *different levels of refinement* to simplify task of *meshing complex geometries*.
 - > Ability to use *different solvers/time-integrators* in different regions.

Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics¹

Coupling is *concurrent* (two-way).

18

- ٠

Model Solid Mechanics PDEs:

Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics¹

ħ

Figure above: tension specimen simulation coupling composite TET10 elements with HEX elements in Sierra/SM.

Figures right: bolted joint simulation coupling composite TET10 elements with HEX elements in Sierra/SM.

¹ Mota *et al*. 2017; Mota *et al*. 2022.

Single Ω

Schwarz

- 20 Outline
- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM# and ROM-ROM Coupling
- Numerical Examples
 - > 2D Shallow Water Equations (SWE)
 - > 2D Burgers' Equations
 - > 2D Euler Equations
- Ongoing/Future Work & Summary

 $\begin{array}{c|cccc} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & &$

h

*Full-Order Model. #Reduced Order Model.

ROM = projection-based Reduced Order Model

HROM = Hyper-reduced ROM

Schwarz Extensions to FOM-ROM and ROM-ROM Couplings

- Perform FOM simulation on a spatial domain Ω and collect s snapshots
- Create domain decomposition of Ω into d overlapping or nonoverlapping subdomains Ω_i with N_o overlap cells (could be 0).

22

- Compute **POD basis** $\boldsymbol{\Phi}_i$ on each Ω_i by restricting the snapshots to Ω_i .
- For nonlinear problems, compute sample mesh S_i on each Ω_i .
 - > Collocation: minimize the residual at a small subset of DOFs $N_s \ll N$.
 - Key question: how to sample Schwarz boundaries given fixed budget of sample mesh points?
- Construct POD/LSPG ROM in each subdomain Ω_i , transmit Schwarz BCs, apply Schwarz iteration procedure.
 - > Key question: how to impose Schwarz BCs in ROMs?
 - BCs imposed approximately by fictitious ghost cells, as FOMs are based on cell-centered finite volume (CCFV) discretizations
 - To maximize efficiency, we employ additive Schwarz with OpenMPI parallelism (1 thread/subdomain)

- 23 Outline
- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM[#] and ROM-ROM Coupling
- Numerical Examples
 - > 2D Shallow Water Equations (SWE)
 - > 2D Burgers' Equations
 - > 2D Euler Equations
- Ongoing/Future Work & Summary

h

*Full-Order Model. #Reduced Order Model.

3 Parametrized Hyperbolic Conservation Law Test Cases

- Nonlinear hyperbolic fluid systems in Pressio/Pressio demo-apps*
 - \succ 2D shallow water equations (SWE), vary Coriolis parameter (μ)
 - > 2D viscous Burgers' equations, vary diffusion parameter (D)
 - \succ 2D Euler equations, vary upper right pressure (p_4) in IC
- Wave/shock propagation across interfaces \Rightarrow high Kolmogorov *n*-width •
- FOM discretization: first-order CCFV method, 300x300 mesh, BDF1 •
- Consider **decompositions** of Ω into **four subdomains** •

24

Pressio

Burgers' $\frac{\partial u}{\partial t} + \frac{1}{2} \left(\frac{\partial u^2}{\partial x} + \frac{\partial uv}{\partial y} \right) = D \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$ $\frac{\partial v}{\partial t} + \frac{1}{2} \left(\frac{\partial uv}{\partial x} + \frac{\partial v^2}{\partial u} \right) = D \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial u^2} \right)$

* https://pressio.github.io,

 N_{o}

https://github.com/cwentland0/pressio-demoapps-schwarz

²⁵ Unsampled ROMs: Impact of Subdomain Overlap

Key result: non-overlapping Schwarz iteration converges without a degradation in accuracy when using **Dirichlet-Dirichlet Schwarz BCs**!

- This result is **not true** in general [Barnett et al., 2022; Mota et al., 2017; Mota et al. 2022]!
 - Generally need alternating Dirichlet-Neumann or Robin-Robin BCs for nonoverlapping Schwarz convergence.
 - Dirichlet-Dirichlet works here due to implied overlap introduced into otherwise nonoverlapping DD by ghost cells.
- More Schwarz iterations are required for convergence with no overlap (as expected)
- Non-overlapping incurs negligible convergence penalty for smooth problems (SWE)
- Non-overlapping Schwarz avoids duplicate calculations in overlap region
- It becomes more difficult to transmit shock across non-overlapping interface (Burgers, Euler)

Red parameter values are predictive.

²⁶ Unsampled ROMs: Stabilization Effects

Key result: domain decomposition + Schwarz coupling can stabilize an otherwise unstable monolithic solution

Movie above: monolithic vs. decomposed ROM for Euler problem with $p_4 = 1.375$ (predictive regime).

Hyper-reduced ROMs: Impact of Boundary Sampling

27

Key result: given a **fixed "budget"** of **sample mesh points**, there is a (problem-dependent) **optimal number** of **sample mesh points** to allocate to the **Schwarz boundaries** vs. the **subdomain interiors**.

- N_d = fixed interval at which Schwarz boundaries are sampled
- For a fixed budget of sample mesh points N_s, boundary points draw points away from interior (figure left)
- Failure to deliberately sample the Schwarz boundary will also always lead to instabilities (movie left)

²⁸ Hyper-reduced ROMs: Impact of Boundary Sampling

Key result: given a **fixed "budget"** of **sample mesh points**, there is a (problem-dependent) **optimal number** of **sample mesh points** to allocate to the **Schwarz boundaries** vs. the **subdomain interiors**.

h

- There is a delicate balance of ensuring **BC transmission** together with an **accurate interior solutions**
- More extensive boundary sampling is required for problems with shocks (Burgers, Euler)

Red parameter values are predictive.

²⁹ Hyper-reduced ROMs: Accuracy

Key result: predictive hyper-reduced ROMs (HROMs) with non-overlapping Dirichlet-Dirichlet Schwarz coupling are indistinguishable from corresponding monolithic ROMs/FOMs.

> Top row: SWE Middle row: Burgers' Bottom row: Euler

³⁰ Hyper-reduced ROMs: Accuracy

Key result: Decomposed ROMs achieve lower error for the same trial basis size *K* and have **no artifacts** at Schwarz boundaries.

Left figure: average absolute spatial error fields for representative monolithic (top) and decomposed (bottom) hyper-reduced ROM with no overlap. Subdomain interfaces are marked with dashed lines.

³¹ Hyper-reduced ROMs: Computational Cost

Key result: additive Schwarz enables speed-ups over corresponding coupled Schwarz FOM and sometimes over monolithic FOM.

- Hyper-reduced ROMs generally achieve cost savings w.r.t. corresponding coupled Schwarz FOM
- Cost savings using Schwarz ROMs over corresponding monolithic FOM are possible for SWE problem
 - > Coupled Schwarz FOMs are often only viable options for Sandia analysts due to meshing challenges
 - > Next step: try to improve this via adaptive Schwarz ROMs

Red parameter values are predictive.

- 32 Outline
- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM[#] and ROM-ROM Coupling
- Numerical Examples
 - > 2D Shallow Water Equations (SWE)
 - > 2D Burgers' Equations
 - > 2D Euler Equations
- Ongoing/Future Work & Summary

h

*Full-Order Model. #Reduced Order Model.

 Ω_2 HFM

ROM

HFM

 Ω_1

 Ω_2

 t_0

HFM

 t_1

 t_1

Ω

Example sample DD and ROM/HFM assignment.

ROM

HFM

On-the-fly model switching in our DD workflow.

HFM

 t_2

 t_2

 Γ_4

Overlap

 $\Omega_2 \cap \Omega_3$

ROM

HFM

HFM

 t_3

 Ω_3 HFM

Time

Time

- Extend Schwarz to non-intrusive ROMs (Operator Inference, NN)
- Development of automated criteria to determine appropriate use of less refined or reduced-order models without sacrificing accuracy, enabling real-time transitions between different model fidelities

 \rightarrow

 Ω_2 HFM

ROM

HFM

 Ω_1

 Ω_2

 t_0

HFM

 t_1

 t_1

Ω

Example sample DD and ROM/HFM assignment.

ROM

HFM

On-the-fly model switching in our DD workflow.

HFM

 t_2

 t_2

 Γ_4

Overlap

 $\Omega_2 \cap \Omega_3$

ROM

HFM

HFM

 t_3

 Ω_3 HFM

Time

Time

- Extend Schwarz to non-intrusive ROMs (Operator Inference, NN)
- Development of automated criteria to determine appropriate use of less refined or reduced-order models without sacrificing accuracy, enabling real-time transitions between different model fidelities

 \rightarrow

- Extend Schwarz to non-intrusive ROMs (Operator Inference, NN)
- Development of automated criteria to determine appropriate use of less refined or reduced-order models without sacrificing accuracy, enabling real-time transitions between different model fidelities

 \rightarrow

Ω

 Ω_2 HFM Γ_4

Overlap

 $\Omega_2 \cap \Omega_3$

 Ω_3 HFM

On-the-fly model switching in our DD workflow.

³⁶ Summary and Ongoing/Future Work

Summary:

- Schwarz has been **demonstrated** for **coupling** of FOMs and (H)ROMs
- Computational gains can be achieved by coupling HROMs and using the additive Schwarz variant
- Interesting new results regarding interface sampling & non-overlapping transmission BCs for CCFV

Ongoing & future work:

- Extension to other applications (fasteners, laser welds)
- Rigorous analysis of why Dirichlet-Dirichlet BC "work" when employing non-overlapping Schwarz with discretizations that employ ghost cells
- Learning of "optimal" transmission conditions to ensure structure preservation
- Extension of Schwarz to enabling coupling of non-intrusive ROMs (e.g., OpInf, Neural Networks)
- Development of automated criteria to determine appropriate use of less refined or reduced-order models without sacrificing accuracy, enabling real-time transitions between different model fidelities → New project: AHEAD LDRD

* <u>https://pressio.github.io</u>

³⁷ Team & Acknowledgments

Irina Tezaur

aur Chris Wentland

Francesco Rizzi

Joshua Barnett

Alejandro Mota

Will Snyder Former Intern from Virginia Tech [Schwarz + PINNs]

Eric Parish

Anthony Gruber 🏒

lan Moore Intern from Virginia Tech [Schwarz + OpInf]

AHEAD/M2dt

Office of Science

References & Codes

[1] A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", *Comput. Meth. Appl. Mech. Engng.* 319 (2017), 19-51.

[2] A. Mota, I. Tezaur, G. Phlipot. "The Schwarz Alternating Method for Dynamic Solid Mechanics", *Comput. Meth. Appl. Mech. Engng.* 121 (21) (2022) 5036-5071.

[3] J. Barnett, I. Tezaur, A. Mota. "The Schwarz alternating method for the seamless coupling of nonlinear reduced order models and full order models", ArXiv pre-print, 2022. <u>https://arxiv.org/abs/2210.12551</u>

[4] W. Snyder, I. Tezaur, C. Wentland. "Domain decomposition-based coupling of physics-informed neural networks via the Schwarz alternating method", ArXiv pre-print, 2023. <u>https://arxiv.org/abs/2311.00224</u>

[5] A. Mota, D. Koliesnikova, I. Tezaur. "A Fundamentally New Coupled Approach to Contact Mechanics via the Dirichlet-Neumann Schwarz Alternating Method", ArXiv pre-print, 2023. <u>https://arxiv.org/abs/2311.05643</u>

[6] C. Wentland, F. Rizzi, J. Barnett, I. Tezaur. "The role of interface boundary conditions and sampling strategies for Schwarz-based coupling of projection-based reduced order models, ArXiv pre-print, 2024. https://arxiv.org/abs/2410.04668 This talk!

[7] Pressio: <u>https://pressio.github.io</u>

[8] Pressio demo-apps: <u>https://github.com/Pressio/pressio-demoapps</u>

[9] Pressio demo-apps + Schwarz: <u>https://github.com/cwentland0/pressio-demoapps-schwarz</u> (copyright assertion in progress)

<u>ikalash@sandia.gov</u> www.sandia.gov/~ikalash **Students:** we have available a summer internship on ROM at Sandia! If interested, please email your CV to Irina.

Start of Backup Slides

40 2D Inviscid Burgers Equation

Popular analog for fluid problems where **shocks** are possible, and particularly **difficult** for conventional projection-based ROMs

X

 Ω_1

0

2

100

100

$$\frac{\partial u}{\partial t} + \frac{1}{2} \left(\frac{\partial (u^2)}{\partial x} + \frac{\partial (uv)}{\partial y} \right) = 0.02 \exp(\mu_2 x)$$
$$\frac{\partial v}{\partial t} + \frac{1}{2} \left(\frac{\partial (vu)}{\partial x} + \frac{\partial (v^2)}{\partial y} \right) = 0$$
$$u(0, y, t; \boldsymbol{\mu}) = \mu_1$$
$$u(x, y, 0) = v(x, y, 0) = 1$$

Problem setup:

- $\Omega = (0,100)^2, t \in [0,25]$
- Two parameters $\mu = (\mu_1, \mu_2)$. Training: uniform sampling of $\mu_1 \times \mu_2 = [4.25, 5.50] \times [0.015, 0.03]$ by a 3 × 3 grid. Testing: query unsampled point $\mu = [4.75, 0.02]$

FOM discretization:

- Spatial discretization given by a Godunov-type scheme with N = 250 elements in each dimension
- Implicit **trapezoidal method** with fixed $\Delta t = 0.05$

Schwarz Coupling Details

Choice of domain decomposition

41

- Overlapping DD of Ω into 4 subdomains coupled via multiplicative Schwarz
- Solution in Ω_1 is **most difficult** to capture by ROM

Snapshot collection and reduced basis construction

• Single-domain FOM on Ω used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

• BCs imposed strongly via Method 1 of [Gunzburger *et al.*, 2007] at indices i_{Dir}

 $\boldsymbol{q}(t) \approx \overline{\boldsymbol{q}} + \boldsymbol{\Phi} \widehat{\boldsymbol{q}}(t)$

> POD modes made to satisfy homogeneous DBCs: $\Phi(i_{\text{Dir}},:) = 0$

> BCs imposed by modifying \overline{q} : $\overline{q}(i_{\text{Dir}}) \leftarrow \chi_q$

Choice of hyper-reduction

- Energy Conserving Sampling & Weighting (ECSW) method for hyper-reduction
- All points on Schwarz boundaries are included in the sample mesh

Figure above: 4 subdomain overlapping DD

Figure above: ECSW augmented reduced mesh

All-ROM Coupling

42

- Method converges in only 3
 Schwarz iterations per controller time-step
- Errors O(1%) or less
- **1.47**× **speedup** over all-FOM coupling for 95% SV energy retention case

	95% SV Energy			99% SV Energy		
Subdomains	М	MSE (%)	CPU time (s)	М	MSE (%)	CPU time (s)
Ω_1	57	1.1	85	146	0.18	295
Ω_2	44	1.2	56	120	0.18	216
Ω_3	24	1.4	43	60	0.16	89
Ω_4	32	1.9	61	66	0.25	100
Total			245			700

Subdomains М MSE (%) CPU time (s) 0.0 95 Ω_1 0.26 26 120 Ω_2 0.43 Ω_3 60 17 0.34 66 21 Ω_{4} (159) Total

99% SV Energy

b

- FOM in Ω_1 as this is "hardest" subdomain for ROM
- HROMs in Ω_2 , Ω_3 , Ω_4 capture **99% snapshot energy**
- Method converges in **3 Schwarz iterations** per controller time-step
- Errors O(0.1%) with 0 error in Ω_1
- 2.26× speedup achieved over all-FOM coupling

Further **speedups** possible via **code optimizations**, **additive Schwarz** and **reduction** of # **sample mesh points**.

- 44 Outline
- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM[#] and ROM-ROM Coupling
- Numerical Examples
 - > 2D Burgers Equation
 - > 2D Shallow Water Equations
 - Teaser: 2D Euler Equations Riemann Problem
- Summary & Future Work

*Full-Order Model. #Reduced Order Model.

⁴⁵ 2D Shallow Water Equations (SWE)

Hyperbolic PDEs modeling **wave propagation** below a pressure surface in a fluid (e.g., atmosphere, ocean).

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} + \frac{\partial (hv)}{\partial y} = 0$$
$$\frac{\partial (hu)}{\partial t} + \frac{\partial}{\partial x} \left(hu^2 + \frac{1}{2}gh^2 \right) + \frac{\partial}{\partial y} (huv) = -\mu v$$
$$\frac{\partial (hv)}{\partial t} + \frac{\partial}{\partial x} (huv) + \frac{\partial}{\partial y} \left(hv^2 + \frac{1}{2}gh^2 \right) = \mu u$$

Problem setup:

- $\Omega = (-5,5)^2$, $t \in [0,10]$, Gaussian initial condition
- Coriolis parameter $\mu \in \{-4, -3, -2, -1, 0\}$ for training, and $\mu \in \{-3.5, -2.5, -1.5, -0.5\}$ for testing

FOM discretization:

- Spatial discretization given by a first-order **cell-centered finite volume** discretization with N = 300 elements in each dimension
- Implicit first order temporal discretization: **backward Euler** with fixed $\Delta t = 0.01$
- Implemented in Pressio-demoapps (<u>https://github.com/Pressio/pressio-demoapps</u>)

Figure above: FOM solutions to SWE for $\mu = -0.5$ (left) and $\mu = -3.5$ (right).

*https://github.com/Pressio/pressio-demoapps

Green: different from Burgers' problem

- Non-overlapping DD of Ω into 4 subdomains coupled via additive Schwarz
 - OpenMP parallelism with 1 thread/subdomain
- All-ROM or All-HROM coupling via Pressio*

Schwarz Coupling Details

Choice of domain decomposition

Snapshot collection and reduced basis construction

• Single-domain FOM on Ω used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

- BCs are imposed **approximately** by fictitious ghost cell states
 - > Implementing Neumann and Robin BCs is challenging
- Ghost cells introduce some overlap even with non-overlapping DD
 - Dirichlet-Dirichlet non-overlapping Schwarz is stable/convergent!
- Choice of hyper-reduction

46

- Collocation for hyper-reduction: min residual at small subset DOFs
- Assume fixed budget of sample mesh points at Schwarz boundaries

Figure above: sample mesh (yellow) and stencil (white) cells

Ghost

cells

Schwarz All-ROM Domain Overlap Study

Study of Schwarz convergence for all-ROM coupling as a function of N_o := cell width of overlap region (not including ghost cells).

Movie above: FOM (left), 4 subdomain ROM coupled via non-overlapping Schwarz (middle), and 4 subdomain ROM coupled via overlapping Schwarz (right) for predictive SWE problem with $\mu = -0.5$. All ROMs have K = 80 POD modes.

- Schwarz iterations decrease (very roughly) with $N_o^{0.25}$ (figure, right) whereas evaluating r(q) scales with N_o^2
 - ➤ ⇒ there is no reason not to do nonoverlapping coupling for this problem

 Dirichlet-Dirichlet coupling with no-overlap (N_o = 0) performs well with no convergence issues (movie, left) and errors comparable to Dirichlet-Dirichlet coupling with overlap (figure below, left)

Figures above: relative error and average # Schwarz iterations as a function of μ and N_o . Black μ : training, red μ : testing.

Schwarz Boundary Sampling for All-HROM Coupling

<u>Key question</u>: how many Schwarz boundary points need to be included in sample mesh when performing HROM coupling?

• Naïve/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Movie above: FOM (left), all HROM with $N_b = 5\%$ (middle) and all HROM with $N_b = 10\%$ (left). ROMs have K = 100 modes and $N_s = 0.5\%N$ sample mesh points.

Figure above: example sample mesh with sampling rate $N_b = 10\%$

- Including too many Schwarz boundary points (Nb) in sample mesh given fixed budget of Ns sample mesh points may lead to too few sample mesh points in interior
- For SWE problem, we can get away with ~10% boundary sampling (movie above, right-most frame)

Coupled HROM Performance

Water Height, $\mu = -0.5$ Water Height Mono PROM, various K 10⁰ $N_{b} = 5$ Mono HPROM, K = 80 $V_{b} = 10$ Schwarz PROM, various K $N_{b} = 15$ Schwarz HPROM, K = 80 10^{-1} 10⁻³ Relative l² error Relative l² error 10^{-2} $N_{\rm s} = 0.5\% N$ Solid: Dashed: $N_s = 1\% N$ 10-3 10^{-4} 10^{-4} 10^{-5} 10^{-1} 10⁰ 101 102 0.0 -4.0-3.5-<u>3</u>.0 -2.5 -ż.0 -1.5-0.5-1.0Speedup vs. Monolithic FOM

(h

- For a fixed ROM dimension, Schwarz delivers lower error and comparable cost!
- There are noticeable **cost savings** relative to **monolithic FOM**!
- Accuracy similar for **predictive** μ (red) and **non-predictive** μ (black) cases.

⁵⁰ Teaser: 2D Euler Equations Riemann Problem

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ (E+p)u \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ (E+p)v \end{pmatrix} = \mathbf{0}$$
$$p = (\gamma - 1) \left(\rho E - \frac{1}{2} \rho (u^2 + v^2) \right)$$

Problem setup:

- $\Omega = (0,1)^2$, $t \in [0,0.8]$, homogeneous Neumann BCs
- Fix $\rho_1 = 1.5$, $u_1 = v_1 = 0$, $p_3 = 0.029$
- Vary p_1 ; IC from compatibility conditions*
 - ▶ Training: $p_1 \in [1.0, 1.25, 1.5, 1.75, 2.0]$
 - ▶ Testing: $p_1 \in [1.125, 1.375, 1.625, 1.875]$

Preliminary results:

- Schwarz can **stabilize** unstable monolithic ROM for fixed dimension *K* (above)
- Since shock traverses all parts of domain, achieving speedups with Schwarz is more difficult

FOM discretization:

- Spatial discretization given by a first-order **cell-centered finite volume** discretization with N = 300 or N = N = 100 elements in each dimension
- Implicit first order temporal discretization: **backward Euler** with fixed $\Delta t = 0.005$
- Implemented in Pressio-demoapps (<u>https://github.com/Pressio/pressio-demoapps</u>)

*Schulz-Rinne, 1993.

51

The Schwarz alternating method has been developed for concurrent multi-scale coupling of conventional and data-driven models.

- © Coupling is *concurrent* (two-way).
- ③ *Ease of implementation* into existing massively-parallel HPC codes.
- ③ "*Plug-and-play" framework*: simplifies task of meshing complex geometries!
 - ③ Ability to couple regions with different non-conformal meshes, different element types and different levels of refinement.
 - Ability to use different solvers (including ROM/FOM) and time-integrators in different regions.
- ③ Scalable, fast, robust on real engineering problems
- © Coupling does not introduce *nonphysical artifacts*.
- ③ *Theoretical* convergence properties/guarantees.

Bonus: PINN-PINN coupling

1D steady **advection-diffusion** equation on $\Omega = [0,1]$:

 $u_x - \nu u_{xx} = 1$, u(0) = u(1) = 0

PINNs are **notoriously difficult to train** for higher Peclet numbers!

Can Schwarz help?

Overlapping DD: $\Omega = \Omega_1 \cup \Omega_2$ with boundary $\partial \Omega = \{0,1\}$

 $\mathcal{L}_{r,i}(\theta) = MSE(-\nu\nabla_x^2 NN_{\Omega_i}(x,\theta) + \nabla_x NN_{\Omega_i}(x,\theta) - 1)$ $\mathcal{L}_{b,i}(\theta) = MSE(NN_{\Omega_i}(\partial\Omega,\theta)) + MSE(NN_{\Omega_i}(\gamma_i,\theta) - NN_{\Omega_j}(\gamma_i,\theta))$

Schwarz PINN training algorithm:

Loop over subdomains Ω_i until convergence of Schwarz method **Train** PINN in Ω_i with loss $\mathcal{L}_i(\theta) = \alpha \mathcal{L}_{r,i}(\theta) + \beta \mathcal{L}_{b,i}(\theta) + \gamma \mathcal{L}_{d,i}(\theta)$ **Communicate** Dirichlet data between neighboring subdomains **Update** boundary data on γ_i from neighboring subdomains If **strong enforcement of Dirichlet BC (SDBC)**, set $\hat{u}_{\Omega_i}(x, \theta) = NN_{\Omega_i}(x, \theta)$ If **weak enforcement of Dirichlet BC (WDBC)**, set $\beta = 0$ and $\hat{u}_{\Omega_i}(x, \theta) = v(x)NN_{\Omega_i}(x, \theta) + \psi(x)\hat{u}_{\Omega_j}(\gamma_j, \theta)$ where v(x) is chosen s.t. $v(0) = v(\gamma_i) = v(1) = 0$ and $\psi(x)$ is chosen s.t. $v(\gamma_i) = 1$ ⁵⁴ Bonus: PINN-PINN coupling

Schwarz iteration 1; Pe = 10 $0.6 \int SDBC \text{ on } \gamma_i$ $0.4 \int 0.2 \int 0.4 \int 0.6 \int 0.8 \int 1.0$

- Schwarz iteration 1; Pe = 250 $300^{-1.0}_{-0.6}$ SDBC on $\partial\Omega$ $300^{-1.0}_{-0.6}$ SDBC on $\partial\Omega$ $0.0^{-1.0}_{-0.2}$ $0.4^{-1.0}_{-0.6}$ $0.8^{-1.0}_{-1.0}$
 - How Dirichlet boundary conditions are handled has a large impact on PINN convergence
 - Convergence not improved in general with
 increasing overlap
 - Increasing # subdomains in general will increase
 CPU time

Bonus: PINN-PINN coupling

56 Bonus: PINN-FOM coupling

- PINN-FOM coupling gives rapid PINN convergence for arbitrarily high Peclet numbers
- PINN-FOM couplings works with **both WDBC and SDBC** configurations

Theoretical Foundation

57

Using the Schwarz alternating as a *discretization method* for PDEs is natural idea with a sound *theoretical foundation*.

- <u>S.L. Sobolev (1936)</u>: posed Schwarz method for *linear elasticity* in variational form and *proved method's convergence* by proposing a convergent sequence of energy functionals.
- <u>S.G. Mikhlin (1951)</u>: *proved convergence* of Schwarz method for general linear elliptic PDEs.
- <u>P.-L. Lions (1988)</u>: studied convergence of Schwarz for *nonlinear monotone elliptic problems* using max principle.
- <u>A. Mota, I. Tezaur, C. Alleman (2017)</u>: proved *convergence* of the alternating Schwarz method for *finite deformation quasi-static nonlinear PDEs* (with energy functional Φ[φ]) with a *geometric convergence rate.*

$$\boldsymbol{\Phi}[\boldsymbol{\varphi}] = \int_{B} A(\boldsymbol{F}, \boldsymbol{Z}) \, dV - \int_{B} \boldsymbol{B} \cdot \boldsymbol{\varphi} \, dV$$
$$\nabla \cdot \boldsymbol{P} + \boldsymbol{B} = \boldsymbol{0}$$

S.L. Sobolev (1908 - 1989)

S.G. Mikhlin (1908 – 1990)

P.- L. Lions (1956-)

A. Mota, I. Tezaur, C. Alleman

Convergence Proof*

Theorem 1. Assume that the energy functional $\Phi[\varphi]$ satisfies properties 1–5 above. Consider the Schwarz alternating method of Section 2 defined by (9)–(13) and its equivalent form (39). Then

- (a) Φ[φ̃⁽⁰⁾] ≥ Φ[φ̃⁽¹⁾] ≥ ··· ≥ Φ[φ̃⁽ⁿ⁻¹⁾] ≥ Φ[φ̃⁽ⁿ⁾] ≥ ··· ≥ Φ[φ], where φ is the minimizer of Φ[φ] over S.
 (b) The sequence {φ̃⁽ⁿ⁾} defined in (39) converges to the minimizer φ of Φ[φ] in S.
- (c) The Schwarz minimum values $\Phi[\tilde{\varphi}^{(n)}]$ converge monotonically to the minimum value $\Phi[\varphi]$ in S starting from any initial guess $\tilde{\varphi}^{(0)}$.

Remark 1 By the coercivity of $\Phi[\varphi]$, it follows from the Lax-Milgram theorem that a unique minimizer to this functional over S writes i.e. the minimization of $\Phi[\varphi]$ is well second	Arain usine (57) and also (58) in (60) leads to	$\lim_{n\to\infty} \bar{\varphi}^{(n)} - \bar{\varphi}^{(n+1)} ^2 = 0, (69)$	$\left(\Phi^{i}[\varphi^{iw}], \varphi - \varphi^{iw}\right) \leq \left(\Phi^{i}[\varphi^{iw}], \varphi - \varphi^{iw}\right) + \alpha_{R} \varphi - \varphi^{iw} \leq \Phi[\varphi] - \Phi[\varphi^{iw}]$ (79)
Remark 2. By the Stamparchia theorem, the minimization of $\Phi(\varphi)$ in S is equivalent to finding $\varphi \in S$ such	$\langle \Psi' [\hat{\varphi}^{(n)}] - \Psi' [\hat{\varphi}^{(n-1)}], \zeta_2 \rangle = \langle \Psi' [\hat{\varphi}^{(n)}], \xi \rangle \le \Psi' [\hat{\varphi}^{(n)}] - \Psi' [\hat{\varphi}^{(n-1)}] \cdot \zeta_2 ,$ (61)	from which we can conclude that $\hat{\varphi}^{(m)} - \hat{\varphi}^{(m+1)} \rightarrow 0$ as $n \rightarrow \infty$. We must now show that $\hat{\varphi}^{(n)}$ converges to φ , the minimizer of $\Phi(\varphi)$ on S. By (53) with $\psi_1 = \varphi$ and	since $a_R \ge 0$. Now, by the Cauchy-Schwarz inequality followed by the application of the Lipshitz continuity of $\Phi'[\varphi]$ (66) we can write
find $(\Phi'[\varphi], \xi - \varphi) \ge 0$ (51)	and substituting (56) into (61) we finally obtain that	$\psi_2 = \tilde{\varphi}^{(n)}$, we have	$\left(\Phi'[\bar{\varphi}^{(n)}], \varphi - \bar{\varphi}^{(n)}\right) \le \Phi'[\bar{\varphi}^{(n)}] \cdot \varphi - \bar{\varphi}^{(n)} \le K \varphi - \bar{\varphi}^{(n)} ^2.$ (80)
for all $\xi \in S$.	$(\Phi'[\tilde{\varphi}^{(n)}], \xi) \le C_0 \Phi'[\tilde{\varphi}^{(n)}] - \Phi'[\tilde{\varphi}^{(n-1)}] \cdot \xi ,$ (62)	$ \varphi - \hat{\varphi}^{(n)} ^2 \le \frac{1}{\alpha_R} \left\{ \Phi[\varphi] - \Phi[\hat{\varphi}^{(n)}] - \left(\Phi^*[\hat{\varphi}^{(n)}], \varphi - \hat{\varphi}^{(n)}] \right) \right\}.$ (70)	Hence, from (79),
Remark 3 Recall that the strict convexity property of $\Phi(\varphi)$ can be written as	$\forall \xi \in S.$	Since φ is the minimum of $\Phi[\varphi]$, by (a) we have that $\Phi[\varphi] \le \Phi[\varphi^{(n)}]$. It follows that	$\Phi[\varphi^{(n)}] - \Phi[\varphi] \le K \varphi^{(n)} - \varphi ^*.$ (81) Moreover by (52) views $\Phi[[\alpha] = 0$
$\Phi[\psi_2] - \Phi[\psi_1] - (\Phi'[\psi_1], \psi_2 - \psi_1) \ge 0,$ (52)	Remark 8 For part (d) of Theorem 1, recall the definition of geometric convergence:	$\Phi[\phi] - \Phi[\hat{\phi}^{(n)}] - (\Phi'[\hat{\phi}^{(n)}], \phi - \hat{\phi}^{(n)}) \le - (\Phi'[\hat{\phi}^{(n)}], \phi - \hat{\phi}^{(n)}) = (\Phi'[\hat{\phi}^{(n)}], \hat{\phi}^{(n)} - \phi).$ (71)	$\Phi(a^{(n)}) = \Phi(a) \ge \alpha a a^{(n)} - a ^2 \qquad (82)$
$\forall \psi_1, \psi_2 \in S$. From (36), remark that if $\Phi(\varphi)$ is strictly convex over $S \forall R \in \mathbb{R}$ such that $R < \infty$, we can find an $\alpha_R > 0$ such that $\forall \psi_1, \psi_2 \in K_R$ we have	$E_{n+1} \le CE_n$, (63)	Subsituting (71) into (70) we have	Using (81) and (82) we obtain
$\Phi[\psi_2] - \Phi[\psi_1] - (\Phi'[\psi_1], \psi_2 - \psi_1) \ge \alpha_B \psi_2 - \psi_1 ^2.$ (53)	$\forall n \in \{0, 1, 2,\}$ for some $C > 0$, where a = a a (n + 1), $a = a (n + 1)$, $a (n + 1)$, $a (n + 1)$, $a (n + 1)$,	$ \varphi - \bar{\varphi}^{(n)} ^2 \le \frac{1}{\alpha_R} \left(\Phi'[\bar{\varphi}^{(n)}], \bar{\varphi}^{(n)} - \varphi \right).$ (72)	$\left(\Phi[\hat{\varphi}^{(\alpha)}] - \Phi[\varphi]\right) - \left(\Phi[\hat{\varphi}^{(\alpha+1)}] - \Phi[\varphi]\right) \le K \hat{\varphi}^{(\alpha)} - \varphi ^2 - \alpha_B \hat{\varphi}^{(\alpha+1)} - \varphi ^2.$ (83)
Remark 4 By property 5, the uniform continuity of $\Phi^{r}[\varphi]$, there exists a modulus of continuity $\omega > 0$, with	$E_n := \hat{\phi}^{(n+1)} - \hat{\phi}^{(n)} .$ (64)	Now by (62) (Remark 7),	Combining (83) and (78) leads to
$ω : K_R \rightarrow K_R$, such that $ Φ'(ψ_1) - Φ'(ψ_2) \le ω\langle ψ_1 - ψ_2 \rangle,$ (54)	Remark 9 Recall from the definition of continuity that if $\Psi[\varphi]$ is Lipshitz continuous at $\varphi^{(n)}$ near φ , then there exists a constant $K \ge 0$ such that	$\left(\Phi'[\hat{\varphi}^{(n)}], \hat{\varphi}^{(n)} - \hat{\varphi}\right) \le C_{0}[\Phi'[\hat{\varphi}^{(n)}] - \Phi'[\hat{\varphi}^{(n-1)}] \cdot \hat{\varphi}^{(n)} - \varphi .$ (73)	$\frac{\alpha_R}{C_1} \phi^{(n)} - \varphi ^2 \le \left(\Phi(\phi^{(n)}) - \Phi(\varphi)\right) - \left(\Phi(\phi^{(n+1)}) - \Phi(\varphi)\right) \le K \phi^{(n)} - \varphi ^2 - \alpha_R \phi^{(n+1)} - \varphi ^2,$
$\forall \psi_1, \psi_2 \in K_R$. By definition, $\omega(e) \rightarrow 0$ as $e \rightarrow 0$.	$ \Psi'[\bar{\varphi}^{(n)}] - \Psi'[\varphi] \le \kappa$ (65)	Substituting (73) into (72) leads to	or (84)
Remark 5 It was shown in [35] that in the case $\Omega_1 \cap \Omega_2 \neq \emptyset$, $\forall \varphi \in S$, there exist $\zeta_1 \in S_1$ and $\zeta_2 \in S_2$ much dust	$ \hat{\varphi}^{(n)} - \varphi = 2^{n+1}$ (60)	$ \hat{\varphi}^{(n)} - \varphi \le \frac{C_0}{\alpha n} \Phi' \hat{\varphi}^{(n)} - \Phi' \hat{\varphi}^{(n-1)} .$ (74)	$ \hat{\varphi}^{(n+1)} - \varphi \le B \hat{\varphi}^{(n)} - \varphi $ (85)
$\varphi = \zeta_1 + \zeta_2,$ (55)	Considering that $\Psi[\varphi] = 0$ since φ is the minimizer of $\Phi[\varphi]$, (65) is equivalent to	Applying the uniform continuity assumption (54), we obtain	with $B := \sqrt{\frac{K}{K} - \frac{1}{2}}$ (86)
and $\max(\zeta_1 , \zeta_2) \le C_0 e $, (36)	$ \Phi'[\hat{\varphi}^{(n)}] \le K \hat{\varphi}^{(n)} - \varphi .$ (66)	$ \tilde{\varphi}^{(n)} - \varphi \le \frac{C_0}{\omega} \left(\tilde{\varphi}^{(n)} - \tilde{\varphi}^{(n-1)} \right).$ (75)	$B = V \propto_{R} \frac{1}{C_1}$, (60) and $B \in \mathbb{R}$ is no cherr $C_1 \simeq \infty_{-1} K$. Berthermore, since the construct $L^{(n)}$ is construct construction.
for some $C_0 > 0$ independent of φ .	Proof of Theorem 1	$\sigma_R \sim \gamma$ By (60) $ \bar{u} ^{(1)} = \bar{u}(\tau) _{1} + 0$ as $n \to \infty$. Even this we obtain the world memoly that $\bar{u}(t) \to \infty$ as	the minimizer φ of $\Phi[\varphi]$ by (b) and (c), it follows that $B \in (0, 1)$. Define $C := 1 - B \in (0, 1)$, then (85)
Remark 6 Note that (39) can be written as	Proof of (a). Let $\tilde{\varphi}^{(1)} = \arg \min_{\varphi \in \tilde{S}_1} \Phi[\varphi]$. By (40), $\tilde{\varphi}^{(1)} \in \tilde{S}_2$. Let $\tilde{\varphi}^*$ be the minimizer of $\Phi[\varphi]$ over \tilde{S}_2 and assume $\Phi[\tilde{S}^*] \simeq \Phi[\tilde{S}^{(1)}]$. By example, the minimizer is the $\tilde{S}^* = \tilde{S}^{(1)}$. Hence, it must be	$n \rightarrow \infty$.	can be recast as $ \phi^{(n+1)} - \phi^{(n)} \le C \phi^{(n)} - \phi^{(n-1)} $ (87)
$(\Phi^{\ell}[\tilde{\varphi}^{(n)}], \xi^{(i)}) = 0, \text{ for } \tilde{\varphi}^{(n)} \in \tilde{S}_{n}, \forall \xi^{(i)} \in S_{i},$ (57)	and suppose $\psi[\varphi^{-}] \ge \psi[\varphi^{-}]$, but us is a commutation, since we can use $\varphi^{-} = \varphi^{-}$. Finite, it cannot be that $\Phi[\tilde{\varphi}^{(1)}] < \Phi[\tilde{\varphi}^{(2)}]$ where $\tilde{\varphi}^{(2)} = \arg \min_{\varphi \in S_{0}} \Phi[\varphi]$. It follows by induction that	Proof of (c). This follows immediately from (a) and (b).	whereupon the claim is proven.
for $i \in \{1, 2\}$ and $n \in \{0, 1, 2,\}$ (recall from (6) the relation between i and n). This is due to the uniqueness of the solution to each minimization problem over \hat{S}_n and the definition of $\phi^{(n)}$ as the minimizer of $\Phi[\phi]$ over	$\Phi[\hat{\varphi}^{(\alpha)}] \le \Phi[\hat{\varphi}^{(\alpha-1)}] \tag{67}$	Proof of (d). By (b) , for large enough n, there exists some $C_1 > 0$ independent of n such that $ \hat{\varphi}^{(n)} - \varphi ^2 \le C_1 \hat{\varphi}^{(n+1)} - \hat{\varphi}^{(n)} ^2$. (76)	B Analytic Solution for Linear-Elastic Singular Bar
S_0 , Remark 7 Let $\tilde{\varphi}^{(n)} \in \tilde{S}_n$, and let $\xi \in S$. By Remark 5 , there exist $\zeta_1 \in S_1$ and $\zeta_2 \in S_2$ such that	for $n \in \{1, 2, 3,\}$. Now let φ be the minimizer of $\Phi[\varphi]$ over S . Since the problem is well-posed φ is unique. Hence $\Phi[\varphi] \le \Phi[\varphi^{(\alpha)}]$ for all $n \in \{1, 2, 3,\}$.	Let us choose C_1 such that $C_1 > \alpha_R/K$, where K is the Lipshitz continuity constant in (66). Combining (68) with (76) leads to	As reference, herein we provide the solution of the singular bar of Section 4.3 for linear elasticity. The equilibrium equation is
$(\Phi'[\tilde{\varphi}^{(\alpha)}], \xi) = \langle \Phi'[\tilde{\varphi}^{(\alpha)}], \zeta_1 + \zeta_2).$ (58)		$\frac{1}{\alpha_R} \left(\Phi[\bar{\varphi}^{(n)}] - \Phi[\bar{\varphi}^{(n+1)}] \right) \ge \bar{\varphi}^{(n+1)} - \bar{\varphi}^{(n)} ^2 \ge \frac{1}{C_1} \bar{\varphi}^{(n)} - \varphi ^2. $ (77)	$P = \sigma(X)A(X) = \text{const.}, \sigma(X) = E\epsilon(X), \epsilon(X) := u'(X), A(X) = A_0\left(\frac{X}{L}\right)^{\frac{1}{2}},$ (88)
		24	

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.

Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

- Like for quasistatics, dynamic alternating Schwarz method converges provided each single-domain problem is *well-posed* and *overlap region* is *non-empty*, under some *conditions* on Δt .
- *Well-posedness* for the dynamic problem requires that action functional $S[\boldsymbol{\varphi}] \coloneqq$

 $\int_{I} \int_{\Omega} L(\boldsymbol{\varphi}, \dot{\boldsymbol{\varphi}}) dV dt \text{ be strictly convex or strictly concave, where } L(\boldsymbol{\varphi}, \dot{\boldsymbol{\varphi}}) \coloneqq T(\dot{\boldsymbol{\varphi}}) + V(\boldsymbol{\varphi}) \text{ is the Lagrangian.}$

- > This is studied by looking at its second variation $\delta^2 S[\boldsymbol{\varphi}_h]$
- We can show assuming a *Newmark* time-integration scheme that for the *fully-discrete* problem:

$$\delta^2 S[\boldsymbol{\varphi}_h] = \boldsymbol{x}^T \left[\frac{\gamma^2}{(\beta \Delta t)^2} \boldsymbol{M} - \boldsymbol{K} \right] \boldsymbol{x}$$

- $\succ \delta^2 S[\boldsymbol{\varphi}_h]$ can always be made positive by choosing a *sufficiently small* Δt
- > Numerical experiments reveal that Δt requirements for **stability/accuracy** typically lead to automatic satisfaction of this bound.

- 60 Energy-Conserving Sampling and Weighting (ECSW)
 - **Project-then-approximate** paradigm (as opposed to approximate-then-project)

$$r_k(q_k, t) = W^T r(\tilde{u}, t)$$
$$= \sum_{e \in \mathcal{E}} W^T L_e^T r_e(L_e + \tilde{u}, t)$$

- $L_e \in \{0,1\}^{d_e \times N}$ where d_e is the **number of degrees of freedom** associated with each mesh element (this is in the context of meshes used in first-order hyperbolic problems where there are N_e mesh elements)
- $L_{e^+} \in \{0,1\}^{d_e \times N}$ selects degrees of freedom necessary for flux reconstruction
- Equality can be **relaxed**

Augmented reduced mesh: \odot represents a selected node attached to a selected element; and \otimes represents an added node to enable the full representation of the computational stencil at the selected node/element

ECSW: Generating the Reduced Mesh and Weights

- Using a subset of the same snapshots $u_i, i \in 1, ..., n_h$ used to generate the state basis V, we can train the reduced mesh
- Snapshots are first **projected** onto their associated basis and then **reconstructed**

$$\begin{aligned} c_{se} &= W^T L_e^T r_e \left(L_{e^+} \left(u_{ref} + V V^T \left(u_s - u_{ref} \right) \right), t \right) \in \mathbb{R}^n \\ d_s &= r_k(\tilde{u}, t) \in \mathbb{R}^n, \quad s = 1, \dots, n_h \end{aligned}$$

• We can then form the **system**

$$\boldsymbol{C} = \begin{pmatrix} c_{11} & \dots & c_{1N_e} \\ \vdots & \ddots & \vdots \\ c_{n_h 1} & \dots & c_{n_h N_e} \end{pmatrix}, \quad \boldsymbol{d} = \begin{pmatrix} d_1 \\ \vdots \\ d_{n_h} \end{pmatrix}$$

- Where $C\xi = d, \xi \in \mathbb{R}^{N_e}, \xi = 1$ must be the solution
- Further relax the equality to yield **non-negative least-squares problem**:

 $\boldsymbol{\xi} = \arg \min_{x \in \mathbb{R}^n} ||\boldsymbol{C}x - \boldsymbol{d}||_2$ subject to $x \ge \mathbf{0}$

 Solve the above optimization problem using a non-negative least squares solver with an early termination condition to promote sparsity of the vector ξ