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• Monolithic (Lagrange multipliers)

• Partitioned (loose) coupling

• Iterative (Schwarz, optimization)
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2 Motivation: Multi-scale & Multi-physics Coupling

• PDEs, ODEs

• Nonlocal integral 

• Classical DFT 

• Atomistic, …

There exist established rigorous mathematical theories for 

coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).
☺
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Traditional + Data-Driven Methods

• PINNs

• Neural ODEs

• Projection-based ROMs, …

There exist established rigorous mathematical theories for 

coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).
☺


Unfortunately, existing algorithmic and software infrastructures are ill-equipped 

to handle plug-and-play integration of non-traditional, data-driven models!



• Alternating Schwarz-based coupling

• Optimization-based coupling

• Coupling via generalized mortar methods

4

Principal research objective: 

• Discover mathematical principles guiding the assembly of standard and data-driven numerical 

models in stable, accurate and physically consistent ways.

Principal research goals:

• “Mix-and-match” standard and data-driven models from three-classes

➢Class A: projection-based reduced order models (ROMs)

➢Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)

➢Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

• Ensure well-posedness & physical consistency of  

resulting heterogeneous models.

• Solve such heterogeneous models efficiently.

Three coupling methods:

Flexible Heterogeneous Numerical Methods (fHNM) and Multi-faceted 
Mathematics for Predictive Digital Twins (M2dt) Projects 

This talk.

This talk.



5 Outline

• The Schwarz Alternating Method for Domain 

Decomposition-Based Coupling

• Extension to FOM*-ROM# and ROM-ROM Coupling

• Numerical Examples

➢ 2D Shallow Water Equations (SWE)

➢ 2D Burgers’ Equations

➢ 2D Euler Equations

• Ongoing/Future Work & Summary

*Full-Order Model.  #Reduced Order Model.
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7 Schwarz Alternating Method for Domain Decomposition

• Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

Initialize:

• Solve PDE by any method on Ω1 w/ initial guess for transmission BCs on Γ1.

Iterate until convergence:

• Solve PDE by any method on Ω2 w/ transmission BCs on Γ2 based on values 

just obtained for Ω1.

• Solve PDE by any method on Ω1 w/ transmission BCs on Γ1 based on values 

just obtained for Ω2.

Crux of Method: if the solution is known in regularly shaped domains, use 

those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

overlapping

non-overlapping

• Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods 

to solve linear algebraic equations.

Idea behind this work: using the Schwarz alternating method as a discretization 

method for solving multi-scale or multi-physics partial differential equations (PDEs).



AS A PRECONDITIONER
FOR THE LINEARIZED 
SYSTEM

AS A SOLVER FOR THE 
COUPLED
FULLY NONLINEAR 
PROBLEM

How We Use the Schwarz Alternating Method8
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Overlapping Domain Decomposition

Non-overlapping Domain Decomposition

• Relevant for multi-material and multi-

physics coupling 

• Alternating Dirichlet-Neumann 

transmission BCs [Zanolli et al. 1987]

• Robin-Robin transmission BCs also lead 

to convergence [Lions 1990] 

• 𝜃 ∈ 0,1 : relaxation parameter (can 

help convergence)

• Dirichlet-Dirichlet transmission BCs 

[Schwarz 1870; Lions 1988; Mota et 

al. 2017; Mota et al. 2022]
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Spatial Coupling via (Multiplicative) Alternating Schwarz



Multiplicative Overlapping Schwarz Additive Overlapping Schwarz

10 Additional Parallelism via Additive Schwarz

• Multiplicative Schwarz: solves subdomain problems sequentially (in serial)

• Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later

➢ Typically requires a few more Schwarz iterations, but does not degrade accuracy

➢ Parallelism helps balance additional cost due to Schwarz iterations

➢ Applicable to both overlapping and non-overlapping Schwarz
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Step 0: Initialize 𝑖 = 0 (controller time index).
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𝒖 𝒙, 0 = 𝒖0,  in 𝛺



Step 0: Initialize 𝑖 = 0 (controller time index).
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solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.
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Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.
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Integrate using 𝛥𝑡2
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from Ω1 to Γ2 
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Step 3: Check for convergence at time 𝑇𝑖+1.
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solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.

➢ If unconverged, return to Step 1. 
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Interpolate from 
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➢ If converged, set 𝑖 =  𝑖 + 1 and return to Step 1.
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Can use different integrators with 

different time steps within each domain!
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Controller time stepper

Time integrator for W1

Time integrator for W2

Model PDE: ቐ 

ሶ𝒖 + 𝑁(𝒖) = 𝒇, in 𝛺 

𝒖(𝒙, 𝑡) = 𝒈(𝑡), on 𝜕𝛺

𝒖 𝒙, 0 = 𝒖0,  in 𝛺

Time-stepping procedure is equivalent to doing 

Schwarz on space-time domain [Mota et al. 2022].



• “Plug-and-play” framework:

➢ Ability to couple regions with different non-conformal meshes, different element types 

and different levels of refinement to simplify task of meshing complex geometries.

➢ Ability to use different solvers/time-integrators in different regions.

• Coupling is concurrent (two-way).

• Ease of implementation into existing massively-

parallel HPC codes.

• Scalable, fast, robust (we target real engineering 

problems, e.g., analyses involving failure of bolted 

components!).

• Coupling does not introduce nonphysical artifacts.

• Theoretical convergence properties/guarantees1.

18

Model Solid Mechanics PDEs:

Quasistatic:

Dynamic:

Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics1

1 Mota et al. 2017; Mota et al. 2022.  2 https://github.com/sandialabs/LCM. 

2

https://github.com/sandialabs/LCM.git


Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics1

1 Mota et al. 2017; Mota et al. 2022.

Figure above: tension specimen simulation coupling 

composite TET10 elements with HEX elements in Sierra/SM.  

Figures right: bolted joint simulation coupling composite 

TET10 elements with HEX elements in Sierra/SM.

Single Ω Schwarz

SchwarzSingle Ω

y-displacement EQPS



20 Outline

• The Schwarz Alternating Method for Domain 

Decomposition-Based Coupling

• Extension to FOM*-ROM# and ROM-ROM Coupling

• Numerical Examples

➢ 2D Shallow Water Equations (SWE)

➢ 2D Burgers’ Equations

➢ 2D Euler Equations

• Ongoing/Future Work & Summary

*Full-Order Model.  #Reduced Order Model.



21 Projection-Based Model Order Reduction via the POD/LSPG* 
Method

21

Full Order Model (FOM):   
𝑑𝒖

𝑑𝑡
= 𝒇(𝒖; 𝑡, 𝝁)

Proper Orthogonal Decomposition (POD):

Solve ODE at different 

design points

1. Acquisition

2. Learning

3. Projection-Based ReductionNumber of 

time steps
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te
 

V
a
ri

a
b
le

s

Save solution data

ROM = projection-based Reduced Order Model                                HROM = Hyper-reduced ROM    

Choose ODE 

temporal 

discretization

Reduce the 

number of 

unknowns

𝒖 𝑡 ≈ 𝒖 𝑡 = 𝜱ෝ𝒖(𝑡)

Minimize 

residual

𝑑𝒖

𝑑𝑡
= 𝒇(𝒖; 𝑡, 𝝁)

𝒓𝑛 𝒖𝑛; 𝝁 = 𝟎, 𝑛 = 1, … , 𝑇

𝑺 𝒓𝑛( 𝜱 ෝ𝒗;  𝝁)

Hyper-reduction/sample mesh

* Least-Squares Petrov-Galerkin



22
Schwarz Extensions to FOM-ROM and ROM-ROM Couplings

22

• Perform FOM simulation on a spatial domain Ω and collect 𝑠 snapshots

• Create domain decomposition of Ω into 𝑑 overlapping or non-

overlapping subdomains Ω𝑖 with 𝑁𝑜 overlap cells (could be 0).

• Compute POD basis 𝜱𝑖  on each Ω𝑖 by restricting the snapshots to Ω𝑖 .

• For nonlinear problems, compute sample mesh 𝑆𝑖 on each Ω𝑖.

➢ Collocation: minimize the residual at a small subset of DOFs 𝑁𝑠 ≪ 𝑁.

➢ Key question: how to sample Schwarz boundaries given fixed 

budget of sample mesh points?

• Construct POD/LSPG ROM in each subdomain Ω𝑖, transmit Schwarz BCs, 

apply Schwarz iteration procedure.

➢ Key question: how to impose Schwarz BCs in ROMs?

❖ BCs imposed approximately by fictitious ghost cells, as FOMs 

are based on cell-centered finite volume (CCFV) discretizations

➢ To maximize efficiency, we employ additive Schwarz with   

OpenMPI parallelism (1 thread/subdomain) 

Ghost cells

Yellow: 

residual cells, 

white: stencil 

cells
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• The Schwarz Alternating Method for Domain 

Decomposition-Based Coupling

• Extension to FOM*-ROM# and ROM-ROM Coupling

• Numerical Examples

➢ 2D Shallow Water Equations (SWE)

➢ 2D Burgers’ Equations

➢ 2D Euler Equations

• Ongoing/Future Work & Summary

*Full-Order Model.  #Reduced Order Model.



24
3 Parametrized Hyperbolic Conservation Law Test Cases

• Nonlinear hyperbolic fluid systems in Pressio/Pressio demo-apps*

➢ 2D shallow water equations (SWE), vary Coriolis parameter (𝜇)

➢ 2D viscous Burgers’ equations, vary diffusion parameter (𝐷)

➢ 2D Euler equations, vary upper right pressure (𝑝4) in IC

• Wave/shock propagation across interfaces ⇒ high Kolmogorov 𝑛-width

• FOM discretization: first-order CCFV method, 300x300 mesh, BDF1

• Consider decompositions of 𝛺 into four subdomains

SWE

Burgers’

Euler

* https://pressio.github.io, 

https://github.com/cwentland0/pressio-demoapps-schwarz

All results 

predictive: 5 

training points, 4 

(interpolative) 

testing points

SWE Burgers’ Euler

https://pressio.github.io/
https://github.com/cwentland0/pressio-demoapps-schwarz


25 Unsampled ROMs: Impact of Subdomain Overlap  

Key result: non-overlapping Schwarz iteration converges without a 

degradation in accuracy when using Dirichlet-Dirichlet Schwarz BCs!

• This result is not true in general [Barnett et al., 

2022; Mota et al., 2017; Mota et al. 2022]! 

➢ Generally need alternating Dirichlet-

Neumann or Robin-Robin BCs for non-

overlapping Schwarz convergence.

➢ Dirichlet-Dirichlet works here due to implied 

overlap introduced into otherwise non-

overlapping DD by ghost cells.

• More Schwarz iterations are required for 

convergence with no overlap (as expected) 

• Non-overlapping incurs negligible convergence 

penalty for smooth problems (SWE)

• Non-overlapping Schwarz avoids duplicate 

calculations in overlap region
• 2

• It becomes more difficult to transmit shock          

across non-overlapping interface (Burgers, Euler)

SWE, 𝐾 = 80 Burgers’, 𝐾 = 200 Euler, 𝐾 = 200

Red parameter values are predictive.

Ghost cells



26 Unsampled ROMs: Stabilization Effects

Key result: domain decomposition + Schwarz coupling can stabilize 

an otherwise unstable monolithic solution 

Blow up!

Movie above: monolithic vs. decomposed ROM for Euler problem with 𝑝4 = 1.375 (predictive regime). 



27 Hyper-reduced ROMs: Impact of Boundary Sampling

Key result: given a fixed “budget” of sample mesh points, there is a (problem-dependent) optimal 

number of sample mesh points to allocate to the Schwarz boundaries vs. the subdomain interiors.

• 𝑁𝑑 = fixed interval at 

which Schwarz boundaries 

are sampled

• For a fixed budget of 

sample mesh points 𝑁𝑠, 

boundary points draw 

points away from interior 

(figure left)

• Failure to deliberately 

sample the Schwarz 

boundary will also always 

lead to instabilities (movie 

left)

𝑁𝑑 = 30 𝑁𝑑 = 3 𝑁𝑑 = 1



28 Hyper-reduced ROMs: Impact of Boundary Sampling

Key result: given a fixed “budget” of sample mesh points, there is a (problem-dependent) optimal 

number of sample mesh points to allocate to the Schwarz boundaries vs. the subdomain interiors.

• There is a delicate balance of ensuring BC transmission together with an accurate interior solutions

• More extensive boundary sampling is required for problems with shocks (Burgers, Euler) 

SWE, 𝑁𝑠 = 0.5%𝑁 Burgers’, 𝑁𝑠 = 3.75%𝑁 Euler, 𝑁𝑠 = 5%𝑁

Red parameter values are predictive.



29 Hyper-reduced ROMs: Accuracy

Monolithic FOM

Monolithic FOM

Monolithic FOM

Monolithic HROM

Monolithic HROM

Monolithic HROM Schwarz HROM

Schwarz HROM

Schwarz HROM

Key result: predictive hyper-reduced ROMs 

(HROMs) with non-overlapping Dirichlet-Dirichlet 

Schwarz coupling are indistinguishable from 

corresponding monolithic ROMs/FOMs.

Top row: SWE

Middle row: Burgers’

Bottom row: Euler



30 Hyper-reduced ROMs: Accuracy

Key result: Decomposed ROMs achieve lower error for the same trial basis size 𝐾
and have no artifacts at Schwarz boundaries. 

Left figure: average absolute 

spatial error fields for 

representative monolithic (top) 

and decomposed (bottom) 

hyper-reduced ROM with no 

overlap.  Subdomain interfaces 

are marked with dashed lines.



31 Hyper-reduced ROMs: Computational Cost

Key result: additive Schwarz enables speed-ups over corresponding 

coupled Schwarz FOM and sometimes over monolithic FOM.

• Hyper-reduced ROMs generally achieve cost savings w.r.t. corresponding coupled Schwarz FOM

• Cost savings using Schwarz ROMs over corresponding monolithic FOM are possible for SWE problem

➢ Coupled Schwarz FOMs are often only viable options for Sandia analysts due to meshing challenges

➢ Next step: try to improve this via adaptive Schwarz ROMs

Red parameter values are predictive.

SWE Burgers’ Euler



32 Outline

• The Schwarz Alternating Method for Domain 

Decomposition-Based Coupling

• Extension to FOM*-ROM# and ROM-ROM Coupling

• Numerical Examples

➢ 2D Shallow Water Equations (SWE)

➢ 2D Burgers’ Equations

➢ 2D Euler Equations

• Ongoing/Future Work & Summary

*Full-Order Model.  #Reduced Order Model.



33 New Project: Adaptive Hybrid modEls via domAin Decomposition 
(AHEAD)

Goals (for solid mechanics exemplars): 

• Simplify meshing via Schwarz + DD

• Extend Schwarz to non-intrusive                                            

ROMs (Operator Inference, NN) 

• Development of automated criteria to determine 

appropriate use of less refined or reduced-order models 

without sacrificing accuracy, enabling real-time 

transitions between different model fidelities
Example sample DD and ROM/HFM assignment.

On-the-fly model switching in our DD workflow.
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35 New Project: Adaptive Hybrid modEls via domAin Decomposition 
(AHEAD)

Example sample DD and ROM/FOM assignment.

On-the-fly model switching in our DD workflow.

Goals (for solid mechanics exemplars): 

• Simplify meshing via Schwarz + DD

• Extend Schwarz to non-intrusive                                            

ROMs (Operator Inference, NN) 

• Development of automated criteria to determine 

appropriate use of less refined or reduced-order models 

without sacrificing accuracy, enabling real-time 

transitions between different model fidelities



36 Summary and Ongoing/Future Work36

Summary:

• Schwarz has been demonstrated for coupling of FOMs and (H)ROMs

• Computational gains can be achieved by coupling HROMs and using the additive Schwarz variant

• Interesting new results regarding interface sampling & non-overlapping transmission BCs for CCFV

Ongoing & future work: 

• Extension to other applications (fasteners, laser welds)

• Rigorous analysis of why Dirichlet-Dirichlet BC “work” 

when employing non-overlapping Schwarz with 

discretizations that employ ghost cells

* https://pressio.github.io

• Learning of “optimal” transmission conditions to ensure 

structure preservation

• Extension of Schwarz to enabling coupling of non-intrusive 

ROMs (e.g., OpInf, Neural Networks)

• Development of automated criteria to determine 

appropriate use of less refined or reduced-order models 

without sacrificing accuracy, enabling real-time transitions 

between different model fidelities → New project: AHEAD LDRD

https://pressio.github.io/
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Figure above: solution of 𝑢 

component at various times

FOM discretization: 

• Spatial discretization given by a Godunov-type scheme with 𝑁 =
 250 elements in each dimension 

• Implicit trapezoidal method with fixed ∆𝑡 =  0.05 

 

Ω1

𝑥0 100

𝑦
10

0
0

2D Inviscid Burgers Equation

Problem setup: 

• Ω = (0,100)2, 𝑡 ∈ 0, 25

• Two parameters 𝝁 = (𝜇1, 𝜇2).  Training: uniform sampling 

of 𝜇1 × 𝜇2 = 4.25, 5.50 × [0.015, 0.03] by a 3 × 3 grid.  

Testing: query unsampled point 𝝁 = [4.75, 0.02]

Popular analog for fluid problems where shocks are possible, and 

particularly difficult for conventional projection-based ROMs

𝜕𝑢

𝜕𝑡
+

1

2

𝜕(𝑢2)

𝜕𝑥
+

𝜕(𝑢𝑣)

𝜕𝑦
= 0.02 exp 𝜇2𝑥

𝜕𝑣

𝜕𝑡
+

1

2

𝜕(𝑣𝑢)

𝜕𝑥
+

𝜕(𝑣2)

𝜕𝑦
= 0

𝑢 0, 𝑦, 𝑡; 𝝁 = 𝜇1

𝑢 𝑥, 𝑦, 0 = 𝑣 𝑥, 𝑦, 0 = 1
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Schwarz Coupling Details

41

Choice of domain decomposition

• Overlapping DD of Ω into 4 subdomains coupled via multiplicative Schwarz

• Solution in Ω1 is most difficult to capture by ROM

Snapshot collection and reduced basis construction

• Single-domain FOM on Ω used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

• BCs imposed strongly via Method 1 of [Gunzburger et al., 2007] at indices 𝑖Dir

𝒒(𝑡) ≈ ഥ𝒒 + 𝜱ෝ𝒒(𝑡)

➢ POD modes made to satisfy homogeneous DBCs:  𝜱 𝒊Dir, ∶ = 𝟎

➢ BCs imposed by modifying ഥ𝒒 :  ഥ𝒒 𝒊Dir ← 𝝌𝒒

Choice of hyper-reduction

• Energy Conserving Sampling & Weighting (ECSW) method for hyper-reduction

• All points on Schwarz boundaries are included in the sample mesh

Ω1

𝑥0 100

𝑦
1

0
0

0

Ω2

Ω3Ω4

Figure above: 

ECSW augmented 

reduced mesh 

Figure above: 4 subdomain 

overlapping DD



All-ROM Coupling
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Ω1

𝑥0 100

𝑦
10

0
0

Ω2

Ω3Ω4

99% Singular Value (SV) Energy Retention95% Singular Value (SV) Energy Retention

Ω1

Ω2

Ω3

Ω4

1 SD

Subdomains

95% SV Energy 99% SV Energy

𝑀 MSE (%) CPU time (s) 𝑀 MSE (%) CPU time (s)

Ω1 57 1.1 85 146 0.18 295

Ω2 44 1.2 56 120 0.18 216

Ω3 24 1.4 43 60 0.16 89

Ω4 32 1.9 61 66 0.25 100

Total 245 700

• Method converges in only 3 

Schwarz iterations per 

controller time-step

• Errors O(1%) or less

• 1.47× speedup over all-FOM 

coupling for 95% SV energy 

retention case
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Ω1

𝑥0 100

𝑦
10

0
0

Ω2

Ω3Ω4

• FOM in Ω1 as this is “hardest” subdomain for ROM

• HROMs in Ω2, Ω3, Ω4 capture 99% snapshot energy

• Method converges in 3 Schwarz iterations per controller time-step

• Errors O(0.1%) with 0 error in Ω1

• 2.26× speedup achieved over all-FOM coupling

Ω1

Ω2

Ω3

Ω4

1 SD

FOM-HROM-HROM-HROM Coupling

Subdomains

99% SV Energy

𝑀 MSE (%) CPU time (s)

Ω1 − 0.0 95

Ω2 120 0.26 26

Ω3 60 0.43 17

Ω4 66 0.34 21

Total 159

Further speedups possible via code optimizations, 

additive Schwarz and reduction of # sample mesh points.



44 Outline

• The Schwarz Alternating Method for Domain 

Decomposition-Based Coupling

• Extension to FOM*-ROM# and ROM-ROM Coupling

• Numerical Examples

➢ 2D Burgers Equation

➢ 2D Shallow Water Equations

➢ Teaser: 2D Euler Equations Riemann Problem

• Summary & Future Work

*Full-Order Model.  #Reduced Order Model.
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FOM discretization: 

• Spatial discretization given by a first-order cell-centered finite volume discretization with 𝑁 = 300 elements 

in each dimension 

• Implicit first order temporal discretization: backward Euler with fixed ∆𝑡 =  0.01

• Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

 

2D Shallow Water Equations (SWE)

Problem setup: 

• Ω = (−5,5)2, 𝑡 ∈ 0, 10 , Gaussian initial condition

• Coriolis parameter 𝜇 ∈ −4, −3, −2, −1,0  for 

training, and 𝜇 ∈ −3.5, −2.5, −1.5, −0.5  for testing

Hyperbolic PDEs modeling wave propagation below a pressure 

surface in a fluid (e.g., atmosphere, ocean).

𝜕ℎ

𝜕𝑡
+

𝜕(ℎ𝑢)

𝜕𝑥
+

𝜕(ℎ𝑣)

𝜕𝑦
= 0

𝜕(ℎ𝑢)

𝜕𝑡
+

𝜕

𝜕𝑥
ℎ𝑢2 +

1

2
𝑔ℎ2 +

𝜕

𝜕𝑦
ℎ𝑢𝑣 = −𝜇𝑣

𝜕(ℎ𝑣)

𝜕𝑡
+

𝜕

𝜕𝑥
ℎ𝑢𝑣 +

𝜕

𝜕𝑦
ℎ𝑣2 +

1

2
𝑔ℎ2 = 𝜇𝑢

Figure above: FOM solutions to SWE for 𝜇 = −0.5 

(left) and 𝜇 = −3.5 (right).

https://github.com/Pressio/pressio-demoapps
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Schwarz Coupling Details 

46

Choice of domain decomposition

• Non-overlapping DD of Ω into 4 subdomains coupled via additive Schwarz

➢ OpenMP parallelism with 1 thread/subdomain

• All-ROM or All-HROM coupling via Pressio*

Snapshot collection and reduced basis construction

• Single-domain FOM on Ω used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

• BCs are imposed approximately by fictitious ghost cell states

➢ Implementing Neumann and Robin BCs is challenging 

• Ghost cells introduce some overlap even with non-overlapping DD  

➢ ⇒ Dirichlet-Dirichlet non-overlapping Schwarz is stable/convergent!

Choice of hyper-reduction

• Collocation for hyper-reduction: min residual at small subset DOFs 

• Assume fixed budget of sample mesh points at Schwarz boundaries

Ghost 

cells

Figure right: non-

overlapping DD w/ ghost 

cells creating overlap

Figure above: sample mesh 

(yellow) and stencil (white) cells

Green: different from Burgers’ problem

*https://github.com/Pressio/pressio-demoapps

https://github.com/Pressio/pressio-demoapps
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Schwarz All-ROM Domain Overlap Study

47

Study of Schwarz convergence for all-ROM coupling as a function of 𝑵𝑜 := 

cell width of overlap region (not including ghost cells).

• Dirichlet-Dirichlet coupling with no-overlap 

(𝑁𝑜= 0) performs well with no convergence 

issues (movie, left) and errors comparable to 

Dirichlet-Dirichlet coupling with overlap 

(figure below, left)

Movie above: FOM (left), 4 subdomain ROM coupled via non-overlapping 

Schwarz (middle), and 4 subdomain ROM coupled via overlapping Schwarz 

(right) for predictive SWE problem with 𝜇 = −0.5.  All ROMs have 𝐾 =
80 POD modes.

• Schwarz iterations decrease (very roughly) with 

𝑁𝑜
0.25 (figure, right) whereas evaluating 𝒓(𝒒) scales 

with 𝑁𝑜
2

➢ ⇒ there is no reason not to do non-

overlapping coupling for this problem

Figures above: relative error and average # Schwarz iterations as a 

function of 𝜇 and 𝑁𝑜. Black 𝜇: training, red 𝜇: testing.
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Schwarz Boundary Sampling for All-HROM Coupling

48

• Including too many Schwarz boundary points (𝑁𝑏) in sample mesh given fixed budget of 𝑁𝑠 sample mesh 

points may lead to too few sample mesh points in interior

• For SWE problem, we can get away with ~10% boundary sampling (movie above, right-most frame)

• Naïve/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Movie above: FOM (left), all HROM with 𝑁𝑏 = 5% (middle) and all HROM with 𝑁𝑏 = 10% 

(left).  ROMs have 𝐾 = 100 modes and 𝑁𝑠 = 0.5%𝑁 sample mesh points.

Figure above: example sample 

mesh with sampling rate 𝑁𝑏 = 10% 

Key question: how many Schwarz boundary points need to be 

included in sample mesh when performing HROM coupling?
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Coupled HROM Performance

49

• For a fixed ROM dimension, Schwarz delivers lower error and comparable cost!

• There are noticeable cost savings relative to monolithic FOM!

• Accuracy similar for predictive 𝜇 (red) and non-predictive 𝜇 (black) cases.

Solid: 𝑁𝑠= 0.5%𝑁
Dashed: 𝑁𝑠 = 1%𝑁 
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FOM discretization: 

• Spatial discretization given by a first-order cell-centered finite volume discretization with 𝑁 =  300 or 𝑁 =
𝑁 = 100 elements in each dimension 

• Implicit first order temporal discretization: backward Euler with fixed ∆𝑡 =  0.005

• Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

 

Teaser: 2D Euler Equations Riemann Problem

Problem setup: 

• Ω = (0,1)2, 𝑡 ∈ 0, 0.8 , homogeneous Neumann BCs

• Fix 𝜌1 = 1.5, 𝑢1 = 𝑣1 = 0, 𝑝3 = 0.029
• Vary 𝑝1; IC from compatibility conditions*

➢ Training: 𝑝1 ∈ 1.0, 1.25,1.5,1.75,2.0
➢ Testing: 𝑝1 ∈ 1.125, 1.375,1.625,1.875

𝜕

𝜕𝑡

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

+
𝜕

𝜕𝑥

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

𝐸 + 𝑝 𝑢

+ 
𝜕

𝜕𝑦

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝

𝐸 + 𝑝 𝑣

= 𝟎

𝑝 = (𝛾 − 1) 𝜌𝐸 −
1

2
𝜌(𝑢2 + 𝑣2)

*Schulz-Rinne, 1993.

Preliminary results:

• Schwarz can stabilize unstable monolithic ROM for 

fixed dimension 𝐾 (above)

• Since shock traverses all parts of domain, achieving 

speedups with Schwarz is more difficult

https://github.com/Pressio/pressio-demoapps


Summary

The Schwarz alternating method has been developed for concurrent 

multi-scale coupling of conventional and data-driven models.

o Coupling is concurrent (two-way).

o Ease of implementation into existing massively-parallel HPC codes.

o “Plug-and-play” framework: simplifies task of meshing complex geometries! 

➢ Ability to couple regions with different non-conformal meshes, different element types 

and different levels of refinement.

➢ Ability to use different solvers (including ROM/FOM) and time-integrators in different 

regions.               

o Scalable, fast, robust on real engineering problems

o Coupling does not introduce nonphysical artifacts.

o Theoretical convergence properties/guarantees.

☺

☺

☺

☺

☺

☺

☺

☺
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52 Bonus: PINN-PINN and PINN-FOM coupling52

𝑥 ො𝑢(𝑥)

PDE loss ℒ𝑟(𝜃)

BC loss ℒ𝑏(𝜃)

Data loss ℒ𝑑(𝜃)

Loss ℒ(𝜃) 𝜃∗ = argmin
𝜃

ℒ 𝜃

Input

Hidden Layers

Output

Loss

Minimize

Neural Network

𝛼

𝛽

𝛾

ℒ 𝜃 = 𝛼𝑟ℒ𝑟 𝜃 + 𝛼𝑏ℒ𝑏 𝜃 + 𝛼𝑑ℒ𝑑(𝜃)

Goal: investigate the use of the Schwarz alternating method as a 

means to couple Physics-Informed Neural Networks (PINNs)

Scenario 1: use Schwarz to train 

subdomain PINNs (offline)

Scenario 2: use Schwarz to 

couple pre-trained subdomain 

PINNs/NNs (online)

Will Snyder
Summer Intern

Virginia Tech

Focus thus far

Related work: Li et al., 2019, Li et al., 2020, Wang et al., 2022.

⋮

⋮

⋮

⋮

⋮

⋮

⋮



53 Bonus: PINN-PINN coupling53

1D steady advection-diffusion equation on Ω = 0,1 :

𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 1, 𝑢(0) = 𝑢(1) = 0

Ω1

0 𝛾1

Ω2

1

PINNs are notoriously difficult to train 

for higher Peclet numbers!

Can Schwarz help?

Schwarz PINN training algorithm:

Loop over subdomains Ω𝑖 until convergence of Schwarz method

Train PINN in Ω𝑖  with loss ℒ𝑖 𝜃 = 𝛼ℒ𝑟,𝑖 𝜃 + 𝛽ℒ𝑏,𝑖 𝜃 + 𝛾ℒ𝑑,𝑖(𝜃)

Communicate Dirichlet data between neighboring subdomains

Update boundary data on 𝛾𝑖 from neighboring subdomains

If strong enforcement of Dirichlet BC (SDBC), set ො𝑢Ω𝑖
𝑥, 𝜃 = 𝑁𝑁Ω𝑖

𝑥, 𝜃

If weak enforcement of Dirichlet BC (WDBC), set 𝛽 = 0 and ො𝑢Ω𝑖
𝑥, 𝜃 = 𝑣 𝑥 𝑁𝑁Ω𝑖

𝑥, 𝜃 + 𝜓 𝑥 ො𝑢Ω𝑗
𝛾𝑗, 𝜃  

where 𝑣(𝑥) is chosen s.t. 𝑣(0) = 𝑣(𝛾𝑖) = 𝑣(1) = 0 and 𝜓 𝑥  is chosen s.t. 𝑣 𝛾𝑖 = 1

ℒ𝑟,𝑖 𝜃 = 𝑀𝑆𝐸 −ν∇𝑥
2𝑁𝑁Ω𝑖

(𝑥, 𝜃) + ∇𝑥𝑁𝑁Ω𝑖
(𝑥, 𝜃) − 1

ℒ𝑏,𝑖 𝜃 = 𝑀𝑆𝐸 𝑁𝑁Ω𝑖
(𝜕Ω, 𝜃) + 𝑀𝑆𝐸 𝑁𝑁Ω𝑖

𝛾𝑖, 𝜃 − 𝑁𝑁Ω𝑗
(𝛾𝑖 , 𝜃)

Overlapping DD: Ω = Ω1 ∪ Ω2 with boundary 𝜕Ω = {0,1}



54 Bonus: PINN-PINN coupling

• How Dirichlet boundary conditions are handled 

has a large impact on PINN convergence

• Convergence not improved in general with 

increasing overlap

• Increasing # subdomains in general will increase 

CPU time

WDBC SDBC on 𝜕Ω 

SDBC on 𝛾𝑖



55 Bonus: PINN-PINN coupling

• Using SDBCs and data loss helps with 

PINN/NN convergence and accuracy



56 Bonus: PINN-FOM coupling

• PINN-FOM coupling gives rapid PINN convergence for arbitrarily high Peclet numbers

• PINN-FOM couplings works with both WDBC and SDBC configurations

PINN subdomain

FOM subdomain



▪ S.L. Sobolev (1936):  posed Schwarz method for linear elasticity in 
variational form and proved method’s convergence by proposing a 
convergent sequence of energy functionals. 

▪ S.G. Mikhlin (1951): proved convergence of Schwarz method for general 
linear elliptic PDEs.

▪ P.-L. Lions (1988): studied convergence of Schwarz for  nonlinear monotone 
elliptic problems using max principle.

▪ A. Mota, I. Tezaur, C. Alleman (2017): proved convergence of the 
alternating Schwarz method for finite deformation quasi-static nonlinear 
PDEs (with energy functional 𝜱[𝝋]) with a geometric convergence rate.

S.G. Mikhlin 

(1908 – 1990)

S.L. Sobolev (1908 – 1989)

𝜱 𝝋 =  න
𝐵

𝐴 𝑭, 𝒁  𝑑𝑉 − න
𝐵

𝑩 ∙ 𝝋 𝑑𝑉

𝛻 ∙ 𝑷 + 𝑩 = 𝟎 A. Mota, I. Tezaur, C. Alleman

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.

Theoretical Foundation

P.- L. Lions (1956-)

57



A. Mota, I. Tezaur, C. Alleman Schwarz Alternating Method in Solid Mechanics

⌦1 ⌦2 Γ1Γ2 !

Figure 1: Two subdomains ⌦1 and ⌦2 and the corresponding boundaries Γ1 and Γ2 used by the Schwarz alternating method.

that is i = 1 and j = 2 if n is odd, and i = 2 and j = 1 if n is even. Introduce the following definitions for

each subdomain i :

• Closure: ⌦i := ⌦i [ @⌦i

• Dirichlet boundary: @' ⌦i := @' ⌦\ ⌦i .

• Neumann boundary: @T ⌦i := @T ⌦\ ⌦i .

• Schwarz boundary: Γ i := @⌦i \ ⌦j .

Note that with thesedefinitionswe guarantee that @' ⌦i \ @T ⌦i = ; , @' ⌦i \ Γ i = ; and @T ⌦i \ Γ i = ; .

Now define the spaces

Si := ' 2 W 1
2 (⌦i ) : ' = χ on @' ⌦i , ' = P⌦j ! Γ i

[' (⌦j )] on Γ i

 
, (7)

and

Vi := ⇠2 W 1
2 (⌦i ) : ⇠= 0 on @' ⌦i [ Γ i

 
, (8)

where thesymbol P⌦j ! Γ i
[·] denotes the projection from thesubdomain ⌦j onto theSchwarz boundary Γ i .

This projection operator plays a central role in the Schwarz alternating method. Its form and implementation

are discussed in subsequent sections. For the moment it is sufficient to assume that the operator is able to

project afield ' from one subdomain to the Schwarz boundary of the other subdomain.

The Schwarz alternating method solves a sequence of problems on ⌦1 and ⌦2. The solution ' (n ) for the

n-th problem is given by

' (n ) =

8
<

:

idX , for n = 0;

arg min
' 2 Si

Φi [' ], for n > 0;
(9)

where idX is the identity map that maps X onto itself (i.e. zero displacement), and

Φi [' ] :=

Z

⌦i

A(F , Z ) dV −

Z

⌦i

RB · ' dV −

Z

@T ⌦i

T · ' dS. (10)

A better guess, if available, may be used to initialize ' (0) on ⌦2 rather than the identity map idX . The

minimization of the functional (10) leads to a variational formulation of the form (4)–(5) for each subdomain

as

DΦi ['
(n ) ](⇠( i ) ) =

Z

⌦i

P : Grad ⇠( i ) dV −

Z

⌦i

RB ·⇠( i ) dV −

Z

@T ⌦i

T ·⇠( i ) dS = 0, (11)

6

Convergence Proof*

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.
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Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

• Like for quasistatics, dynamic alternating Schwarz method converges provided each single-domain 
problem is well-posed and overlap region is non-empty, under some conditions on Δ𝑡.  

• Well-posedness for the dynamic problem requires that action functional 𝑆 𝝋 ≔

𝐼 Ω
𝐿 𝝋, ሶ𝝋 𝑑𝑉𝑑𝑡 be strictly convex or strictly concave, where 𝐿 𝝋, ሶ𝝋 ≔ 𝑇 ሶ𝝋 + 𝑉 𝝋  is the 

Lagrangian.

➢ This is studied by looking at its second variation 𝛿2𝑆[𝝋ℎ]

• We can show assuming a Newmark time-integration scheme that for the fully-discrete problem:

𝛿2𝑆[𝝋ℎ]=𝒙𝑇
𝛾2

(𝛽Δ𝑡)2 𝑴 − 𝑲 𝒙

➢ 𝛿2𝑆[𝝋ℎ] can always be made positive by choosing a sufficiently small Δ𝑡

➢ Numerical experiments reveal that Δ𝑡 requirements for stability/accuracy typically lead to 
automatic satisfaction of this bound. 

*A. Mota, I. Tezaur, G. Phlipot. "The Schwarz alternating method for dynamic solid mechanics", IJNME, 2022.
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Energy-Conserving Sampling and Weighting (ECSW)60

• Project-then-approximate paradigm (as opposed to approximate-then-project)

𝑟𝑘 𝑞𝑘 , 𝑡 = 𝑊𝑇𝑟 𝑢, 𝑡

= 
𝑒∈ℰ

𝑊𝑇𝐿𝑒
𝑇𝑟𝑒(𝐿𝑒+ 𝑢, 𝑡)

• 𝐿𝑒 ∈ 0,1 𝑑𝑒×𝑁 where 𝑑𝑒 is the number of degrees of freedom associated with each mesh element (this is 

in the context of meshes used in first-order hyperbolic problems where there are 𝑁𝑒 mesh elements)

• 𝐿𝑒+ ∈ 0,1 𝑑𝑒×𝑁 selects degrees of freedom necessary for flux reconstruction

• Equality can be relaxed



ECSW: Generating the Reduced Mesh and Weights61

• Using a subset of the same snapshots 𝑢𝑖, 𝑖 ∈ 1, … , 𝑛ℎ used to generate the state basis 𝑉, we can train the 

reduced mesh

• Snapshots are first projected onto their associated basis and then reconstructed

𝑐𝑠𝑒 = 𝑊𝑇𝐿𝑒
𝑇𝑟𝑒 𝐿𝑒+ 𝑢𝑟𝑒𝑓 + 𝑉 𝑉𝑇 𝑢𝑠 − 𝑢𝑟𝑒𝑓 , 𝑡 ∈ ℝ𝑛

𝑑𝑠  = 𝑟𝑘 𝑢, 𝑡 ∈ ℝ𝑛, 𝑠 = 1, … , 𝑛ℎ

• We can then form the system

𝑪 =

𝑐11 … 𝑐1𝑁𝑒

⋮ ⋱ ⋮
𝑐𝑛ℎ1 … 𝑐𝑛ℎ𝑁𝑒

, 𝒅 =

𝑑1

⋮
𝑑𝑛ℎ

• Where 𝑪𝝃 = 𝒅, 𝝃 ∈ ℝ𝑁𝑒, 𝝃 = 𝟏 must be the solution

• Further relax the equality to yield non-negative least-squares problem: 

𝝃 = arg min𝒙∈ℝ𝑛||𝑪𝒙 − 𝒅||2 subject to 𝒙 ≥ 𝟎

• Solve the above optimization problem using a non-negative least squares solver with an early 

termination condition to promote sparsity of the vector 𝝃
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