
PRESENTED BY

Sandia National Laboratories is a multimission 
laboratory managed and operated by National 
Technology & Engineering Solutions of Sandia, 
LLC, a wholly owned subsidiary of Honeywell 
International Inc., for the U.S. Department of 

Energy’s National Nuclear Security 
Administration under contract DE-NA0003525.

2nd AMS-UMI International Joint Meeting
Palermo, Italy.  July 23-26, 2024

SAND2024-08453C

Flexible domain decomposition-based couplings 
of conventional and data-driven models via the 

Schwarz alternating method

Irina Tezaur1, Chris Wentland1, Francesco Rizzi2, Joshua Barnett3, 
Alejandro Mota1

    1Sandia National Laboratories, 2NexGen Analytics, 3Cadence Design Systems



• Monolithic (Lagrange multipliers)
• Partitioned (loose) coupling
• Iterative (Schwarz, optimization)
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• Mesh-based (FE, FV, FD)
• Meshless (SPH,  MLS)
• Implicit, explicit
• Eulerian, Lagrangian…
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2 Motivation: multi-scale & multi-physics coupling

• PDEs, ODEs
• Nonlocal integral 
• Classical DFT 
• Atomistic, …

There exist established rigorous mathematical theories for 
coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).
☺
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Traditional + Data-Driven Methods

• PINNs
• Neural ODEs
• Projection-based ROMs, …

There exist established rigorous mathematical theories for 
coupling multi-scale and multi-physics components based on 

traditional discretization methods (“Full Order Models” or FOMs).
☺

☹Unfortunately, existing algorithmic and software infrastructures are ill-equipped 
to handle plug-and-play integration of non-traditional, data-driven models!



• Alternating Schwarz-based coupling
• Optimization-based coupling
• Coupling via generalized mortar methods

4

Principal research objective: 
• Discover mathematical principles guiding the assembly of standard and data-driven numerical 

models in stable, accurate and physically consistent ways.

Principal research goals:
• “Mix-and-match” standard and data-driven models from three-classes
� Class A: projection-based reduced order models (ROMs)
� Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)
� Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

• Ensure well-posedness & physical consistency of  
resulting heterogeneous models.

• Solve such heterogeneous models efficiently.

Three coupling methods:

Flexible Heterogeneous Numerical Methods (fHNM) Project

This talk.

This talk.



5 Outline

• The Schwarz Alternating Method for Domain 
Decomposition-Based Coupling

• Extension to FOM*-ROM# and ROM-ROM Coupling

• Numerical Examples

� 2D Burgers Equation

� 2D Shallow Water Equations

� Teaser: 2D Euler Equations Riemann Problem

• Summary & Future Work

*Full-Order Model.  #Reduced Order Model.
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7 Schwarz Alternating Method for Domain Decomposition
• Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

 

Crux of Method: if the solution is known in regularly shaped domains, use 
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

overlapping

non-overlapping

• Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods 
to solve linear algebraic equations.

Idea behind this work: using the Schwarz alternating method as a discretization 
method for solving multi-scale or multi-physics partial differential equations (PDEs).
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AS A PRECONDITIONER 
FOR THE LINEARIZED 
SYSTEM

AS A SOLVER FOR THE 
COUPLED
FULLY NONLINEAR 
PROBLEM

How We Use the Schwarz Alternating Method8
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Overlapping Domain Decomposition

Non-overlapping Domain Decomposition

 

• Dirichlet-Dirichlet transmission BCs 
[Schwarz 1870; Lions 1988; Mota et 
al. 2017; Mota et al. 2022]

 

 

 

 

 

Model PDE:
 

Spatial Coupling via (Multiplicative) Alternating Schwarz



Multiplicative Overlapping Schwarz Additive Overlapping Schwarz

10 Additional Parallelism via Additive Schwarz

• Multiplicative Schwarz: solves subdomain problems sequentially (in serial)

• Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later

� Typically requires a few more Schwarz iterations, but does not degrade accuracy
� Parallelism helps balance additional cost due to Schwarz iterations

� Applicable to both overlapping and non-overlapping Schwarz

 

 

 

 

Model PDE:
 



 

   

11 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for Ω1

Time integrator for Ω2

Model PDE:
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Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for Ω1

Time integrator for Ω2

Model PDE:
 



 

 

 

  

 

Can use different integrators with 
different time steps within each domain!

16 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for Ω1

Time integrator for Ω2

Model PDE:
 



 

 

 

  

 

17 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for Ω1

Time integrator for Ω2

Model PDE:
 

Time-stepping procedure is equivalent to doing 
Schwarz on space-time domain [Mota et al. 2022].



• “Plug-and-play” framework:

� Ability to couple regions with different non-conformal meshes, different element types 
and different levels of refinement to simplify task of meshing complex geometries.

� Ability to use different solvers/time-integrators in different regions.

 

18

Model Solid Mechanics PDEs:

Quasistatic:

Dynamic:

 

1 Mota et al. 2017; Mota et al. 2022.  2 https://github.com/sandialabs/LCM. 

2

https://github.com/sandialabs/LCM.git


 

1 Mota et al. 2017; Mota et al. 2022.

Figure above: tension specimen simulation coupling 
composite TET10 elements with HEX elements in Sierra/SM.  

Figures right: bolted joint simulation coupling composite 
TET10 elements with HEX elements in Sierra/SM.

  Schwarz

Schwarz 

y-displacement EQPS
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• The Schwarz Alternating Method for Domain 
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� 2D Shallow Water Equations
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• Summary & Future Work

*Full-Order Model.  #Reduced Order Model.



21 Projection-Based Model Order Reduction via the POD/LSPG* Method21

 

Proper Orthogonal Decomposition (POD):

Solve ODE at different 
design points

1. Acquisition

2. Learning

3. Projection-Based ReductionNumber of 
time steps
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Save solution data

ROM = projection-based Reduced Order Model                                HROM = Hyper-reduced ROM    

Choose ODE 
temporal 

discretization

Reduce the 
number of 
unknowns

 

Minimize 
residual

 

 

 

Hyper-reduction/sample mesh

* Least-Squares Petrov-Galerkin



22
Schwarz Extensions to FOM-ROM and ROM-ROM Couplings

22

Choice of domain decomposition
• Overlapping vs. non-overlapping domain decomposition?
� Non-overlapping more flexible but typically requires more Schwarz iterations

• FOM vs. ROM subdomain assignment?
� Do not assign ROM to subdomains where they have no hope of approximating solution

Snapshot collection and reduced basis construction
• Are subdomains simulated independently in each subdomains or together?

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries
• Strong vs. weak BC enforcement?
� Strong BC enforcement difficult for some models (e.g., cell-centered finite volume, PINNs)

• Optimizing parameters in Schwarz BCs for non-overlapping Schwarz?
Choice of hyper-reduction
• What hyper-reduction method to use?
� Application may require particular method (e.g., ECSW for solid mechanics problems)

• How to sample Schwarz boundaries in applying hyper-reduction?
� Need to have enough sample mesh points at Schwarz boundaries to apply Schwarz
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2D Inviscid Burgers Equation

 

Popular analog for fluid problems where shocks are possible, and 
particularly difficult for conventional projection-based ROMs
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Schwarz Coupling Details
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Figure above: 
ECSW augmented 

reduced mesh 

Figure above: 4 subdomain 
overlapping DD
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1 SD

FOM-HROM-HROM-HROM Coupling
Subdomains

99% SV Energy

MSE (%) CPU time (s)

0.0 95

120 0.26 26

60 0.43 17

66 0.34 21

Total 159

Further speedups possible via code optimizations, 
additive Schwarz and reduction of # sample mesh points.
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2D Shallow Water Equations (SWE)

 

Hyperbolic PDEs modeling wave propagation below a pressure 
surface in a fluid (e.g., atmosphere, ocean).
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Schwarz Coupling Details 
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Ghost 
cells

Figure right: 
non-overlapping DD w/ 

ghost cells creating 
overlap

Figure above: sample mesh 
(yellow) and stencil (white) cells

Green: different from Burgers’ problem

*https://github.com/Pressio/pressio-demoapps

https://github.com/Pressio/pressio-demoapps


30
Schwarz All-ROM Domain Overlap Study

30
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Schwarz Boundary Sampling for All-HROM Coupling

31

 

• Naïve/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

   

Key question: how many Schwarz boundary points need to be 
included in sample mesh when performing HROM coupling?
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Coupled HROM Performance
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33 Outline

*Full-Order Model.  #Reduced Order Model.
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Teaser: 2D Euler Equations Riemann Problem

 

 

*Schulz-Rinne, 1993.
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36 Summary and Future Work36

Summary:
• Schwarz has been demonstrated for coupling of FOMs and (H)ROMs
• Computational gains can be achieved by coupling HROMs and using the additive Schwarz variant

Ongoing & future work: 

• Extension to other applications (fasteners, laser welds)
• Rigorous analysis of why Dirichlet-Dirichlet BC “work” 

when employing non-overlapping Schwarz with 
discretizations that employ ghost cells

* https://pressio.github.io

• Learning of “optimal” transmission conditions to ensure 
structure preservation

• Extension of Schwarz to enabling coupling of non-intrusive 
ROMs (e.g., DMD, OpInf, Neural Networks)

• Development of automated criteria to determine 
appropriate use of less refined or reduced-order models 
without sacrificing accuracy, enabling real-time transitions 
between different model fidelities  

https://https/pressio.github.io
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All-ROM Coupling
40
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99% Singular Value (SV) Energy Retention95% Singular Value (SV) Energy Retention

 
 

 
 

1 SD

Subdomains
95% SV Energy 99% SV Energy

MSE (%) CPU time (s) MSE (%) CPU time (s)

57 1.1 85 146 0.18 295

44 1.2 56 120 0.18 216

24 1.4 43 60 0.16 89

32 1.9 61 66 0.25 100

Total 245 700

 



Summary
The Schwarz alternating method has been developed for concurrent 

multi-scale coupling of conventional and data-driven models.

o Coupling is concurrent (two-way).

o Ease of implementation into existing massively-parallel HPC codes.

o “Plug-and-play” framework: simplifies task of meshing complex geometries! 

� Ability to couple regions with different non-conformal meshes, different element types 
and different levels of refinement.

� Ability to use different solvers (including ROM/FOM) and time-integrators in different 
regions.               

o Scalable, fast, robust on real engineering problems

o Coupling does not introduce nonphysical artifacts.

o Theoretical convergence properties/guarantees.

☺
☺
☺
☺

☺

☺
☺

☺
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42 Bonus: PINN-PINN and PINN-FOM coupling42

   

 

 

 

   

Input

Hidden Layers

Output

Loss

Minimize

Neural Network

 

 

 

 

Goal: investigate the use of the Schwarz alternating method as a 
means to couple Physics-Informed Neural Networks (PINNs)

Scenario 1: use Schwarz to train 
subdomain PINNs (offline)

Scenario 2: use Schwarz to 
couple pre-trained subdomain 
PINNs/NNs (online)

Will Snyder
Summer Intern
Virginia Tech

Focus thus far

Related work: Li et al., 2019, Li et al., 2020, Wang et al., 2022.

 

 

 

 

 

 

 

 

 

 

 

 

 



43 Bonus: PINN-PINN coupling43

 

 

 

     

 

 

PINNs are notoriously difficult to train 
for higher Peclet numbers!

Can Schwarz help?

 

 

 



44 Bonus: PINN-PINN coupling

• How Dirichlet boundary conditions are handled 
has a large impact on PINN convergence

• Convergence not improved in general with 
increasing overlap

• Increasing # subdomains in general will increase 
CPU time

WDBC  

 



45 Bonus: PINN-PINN coupling

• Using SDBCs and data loss helps with 
PINN/NN convergence and accuracy



46 Bonus: PINN-FOM coupling

• PINN-FOM coupling gives rapid PINN convergence for arbitrarily high Peclet numbers

• PINN-FOM couplings works with both WDBC and SDBC configurations

PINN subdomain

FOM subdomain



 

S.G. Mikhlin 

(1908 – 1990)

S.L. Sobolev (1908 – 1989)

 

A. Mota, I. Tezaur, C. Alleman

Using the Schwarz alternating as a discretization method for 
PDEs is natural idea with a sound theoretical foundation.

Theoretical Foundation

P.- L. Lions (1956-)
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Convergence Proof*

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.
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Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

 

 

 

*A. Mota, I. Tezaur, G. Phlipot. "The Schwarz alternating method for dynamic solid mechanics", IJNME, 2022.
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Energy-Conserving Sampling and Weighting (ECSW)50

 



ECSW: Generating the Reduced Mesh and Weights51

 


