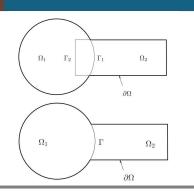
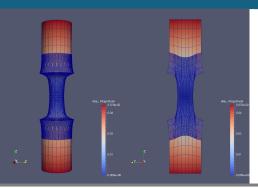
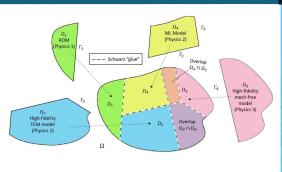


Flexible domain decomposition-based couplings of conventional and data-driven models via the Schwarz alternating method







Irina Tezaur¹, Chris Wentland¹, Francesco Rizzi², Joshua Barnett³, Alejandro Mota¹

¹Sandia National Laboratories, ²NexGen Analytics, ³Cadence Design Systems

2nd AMS-UMI International Joint Meeting Palermo, Italy. July 23-26, 2024

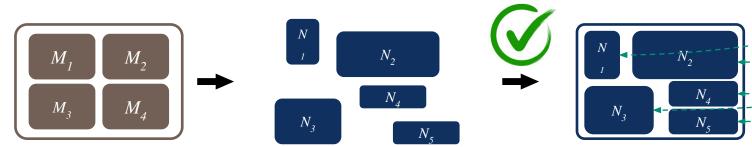
SAND2024-08453C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-NA0003525.

Motivation: multi-scale & multi-physics coupling

There exist established **rigorous mathematical theories** for **coupling** multi-scale and multi-physics components based on **traditional discretization methods** ("Full Order Models" or FOMs).



Complex System Model

- PDEs, ODEs
- Nonlocal integral
- Classical DFT
- Atomistic, ...

Traditional Methods

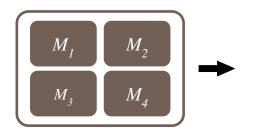
- Mesh-based (FE, FV, FD)
- Meshless (SPH, MLS)
- Implicit, explicit
- Eulerian, Lagrangian...

Coupled Numerical Model

- Monolithic (Lagrange multipliers)
- Partitioned (loose) coupling
- Iterative (Schwarz, optimization)

Motivation: multi-scale & multi-physics coupling

There exist established rigorous mathematical theories for coupling multi-scale and multi-physics components based on traditional discretization methods ("Full Order Models" or FOMs).



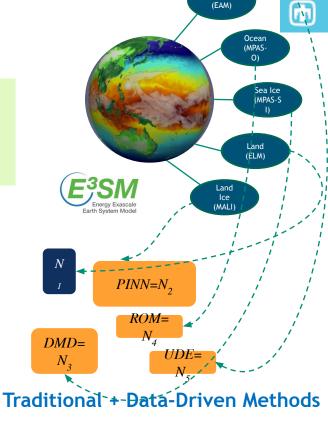
Complex System Model **Traditional Methods**

- PDEs, ODEs
- Nonlocal integral
- Classical DFT
- Atomistic, ...

- Mesh-based (FE, FV, FD)
- Meshless (SPH, MLS)
- Implicit, explicit
- Eulerian, Lagrangian, ...

Coupled Numerical Model

- Monolithic (Lagrange multipliers)
- Partitioned (loose) coupling
- Iterative (Schwarz, optimization)



- **PINNs**
- **Neural ODEs**
- Projection-based ROMs, ...

Unfortunately, existing algorithmic and software infrastructures are ill-equipped to handle plug-and-play integration of non-traditional, data-driven models!

Flexible Heterogeneous Numerical Methods (fHNM) Project

Principal research objective:

• **Discover mathematical principles** guiding the assembly of **standard** and **data-driven** numerical models in stable, accurate and physically consistent ways.

Principal research goals:

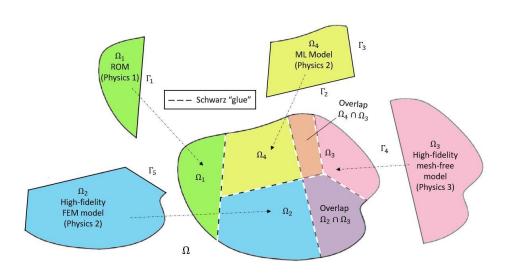
- "Mix-and-match" standard and data-driven models from three-classes

 - ☐ Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)
 - ☐ Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models
- Ensure well-posedness & physical consistency of resulting heterogeneous models.
- Solve such heterogeneous models efficiently.

Three coupling methods:

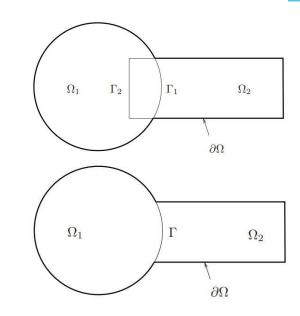
- Alternating Schwarz-based coupling This
 - This talk.

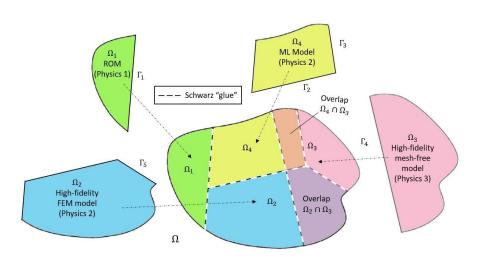
- Optimization-based coupling
- Coupling via generalized mortar methods



Outline

- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM# and ROM-ROM Coupling
- Numerical Examples
 - ☐ 2D Burgers Equation
 - 2D Shallow Water Equations
 - ☐ Teaser: 2D Euler Equations Riemann Problem
- Summary & Future Work

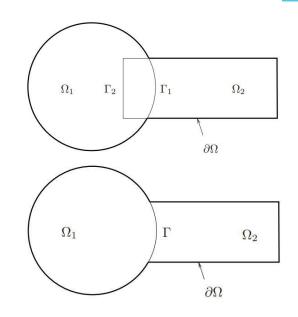


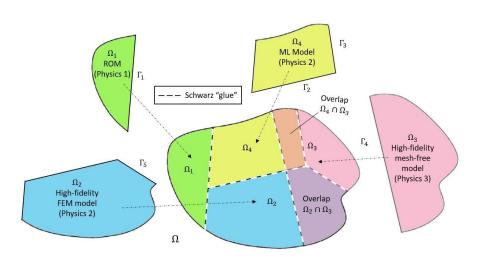


^{*}Full-Order Model. *Reduced Order Model.

Outline

- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM# and ROM-ROM Coupling
- Numerical Examples
 - ☐ 2D Burgers Equation
 - 2D Shallow Water Equations
 - ☐ Teaser: 2D Euler Equations Riemann Problem
- Summary & Future Work





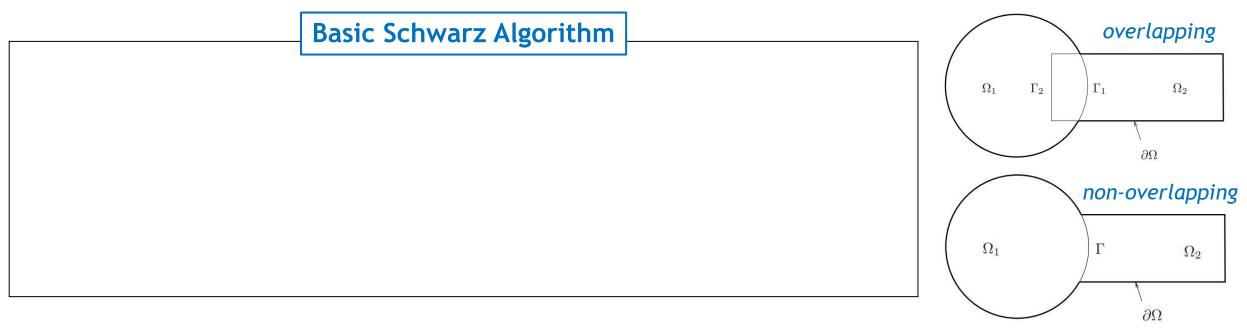
^{*}Full-Order Model. *Reduced Order Model.

Schwarz Alternating Method for Domain Decomposition

Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.

H. Schwarz (1843-1921)



 Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods to solve linear algebraic equations.

<u>Idea behind this work:</u> using the Schwarz alternating method as a *discretization* method for solving multi-scale or multi-physics partial differential equations (PDEs).

AS A PRECONDITIONER FOR THE LINEARIZED SYSTEM

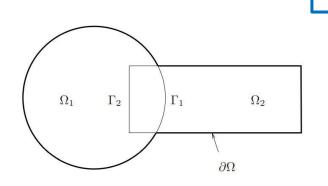
AS A SOLVER FOR THE **COUPLED FULLY NONLINEAR PROBLEM**

Spatial Coupling via (Multiplicative) Alternating Schwarz

Overlapping Domain Decomposition

$$\begin{cases} N\left(\boldsymbol{u}_{1}^{(n+1)}\right) = f \text{ , in } \Omega_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{g}, \text{ on } \partial \Omega_{1} \backslash \Gamma_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{u}_{2}^{(n)} \text{ on } \Gamma_{1} \end{cases}$$

$$\begin{cases} N\left(\boldsymbol{u}_{2}^{(n+1)}\right) = f \text{ , in } \Omega_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{g}, \text{ on } \partial \Omega_{2} \backslash \Gamma_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{u}_{1}^{(n+1)} \text{ on } \Gamma_{2} \end{cases}$$

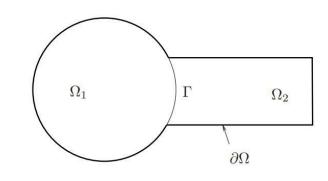


Model PDE:

 Dirichlet-Dirichlet transmission BCs [Schwarz 1870; Lions 1988; Mota et al. 2017; Mota et al. 2022]

Non-overlapping Domain Decomposition

$$\begin{cases} N\left(\boldsymbol{u}_{2}^{(n+1)}\right) = f, & \text{in } \Omega_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{g}, & \text{on } \partial \Omega_{2} \backslash \Gamma \\ \nabla \boldsymbol{u}_{2}^{(n+1)} \cdot \boldsymbol{n} = \nabla \boldsymbol{u}_{1}^{(n+1)} \cdot \boldsymbol{n}, & \text{on } \Gamma \end{cases}$$



Additional Parallelism via Additive Schwarz

Multiplicative Overlapping Schwarz

$$\begin{cases} N\left(\boldsymbol{u}_{1}^{(n+1)}\right) = f \text{ , in } \Omega_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{g}, \text{ on } \partial\Omega_{1} \backslash \Gamma_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{u}_{2}^{(n)} \text{ on } \Gamma_{1} \end{cases}$$

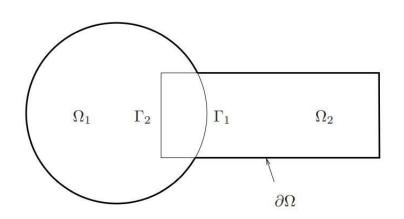
$$\begin{cases} N\left(\boldsymbol{u}_{2}^{(n+1)}\right) = f \text{ , in } \Omega_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{g}, \text{ on } \partial\Omega_{2} \backslash \Gamma_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{u}_{1}^{(n+1)} \text{ on } \Gamma_{2} \end{cases}$$

Additive Overlapping Schwarz

$$\begin{cases} N\left(\boldsymbol{u}_{1}^{(n+1)}\right) = f \text{ , in } \Omega_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{g}, \text{ on } \partial\Omega_{1} \backslash \Gamma_{1} \\ \boldsymbol{u}_{1}^{(n+1)} = \boldsymbol{u}_{2}^{(n)} & \text{on } \Gamma_{1} \end{cases}$$
$$\begin{cases} N\left(\boldsymbol{u}_{2}^{(n+1)}\right) = f \text{ , in } \Omega_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{g}, \text{ on } \partial\Omega_{2} \backslash \Gamma_{2} \\ \boldsymbol{u}_{2}^{(n+1)} = \boldsymbol{u}_{1}^{(n)} & \text{on } \Gamma_{2} \end{cases}$$

Model PDE:

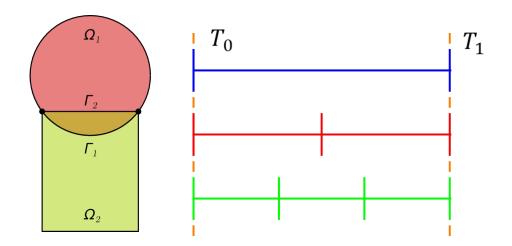
$$\begin{cases} N(\boldsymbol{u}) = \boldsymbol{f}, & \text{in } \Omega \\ \boldsymbol{u} = \boldsymbol{g}, & \text{on } \partial \Omega \end{cases}$$



- Multiplicative Schwarz: solves subdomain problems sequentially (in serial)
- Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later
 - ☐ Typically requires a few more **Schwarz iterations**, but does not degrade **accuracy**
 - Parallelism helps balance additional cost due to Schwarz iterations
 - Applicable to both overlapping and non-overlapping Schwarz

(1)

Time-Advancement Within the Schwarz Framework



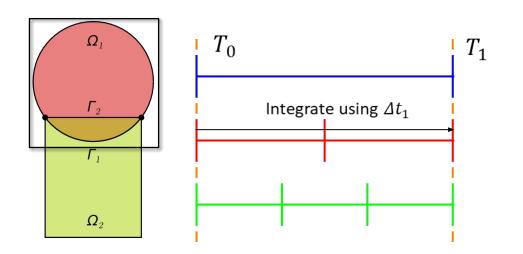
Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for $\Omega_{\rm l}$

Time integrator for Ω_{γ}

Model PDE:
$$\begin{cases} \dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f}, & \text{in } \Omega \\ \boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{g}(t), & \text{on } \partial\Omega \\ \boldsymbol{u}(\boldsymbol{x},0) = \boldsymbol{u}_0, & \text{in } \Omega \end{cases}$$



Controller time stepper

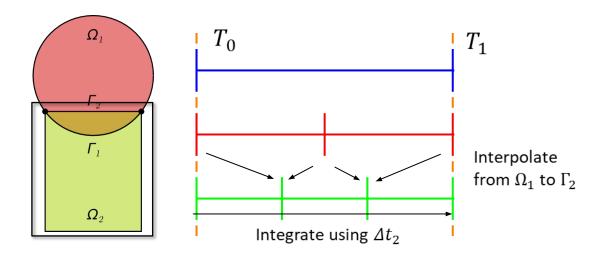
Time integrator for Ω_1

Time integrator for Ω_2

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

Model PDE:
$$\begin{cases} \dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f}, & \text{in } \Omega \\ \boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{g}(t), & \text{on } \partial\Omega \\ \boldsymbol{u}(\boldsymbol{x},0) = \boldsymbol{u}_0, & \text{in } \Omega \end{cases}$$



Controller time stepper

Time integrator for Ω_1

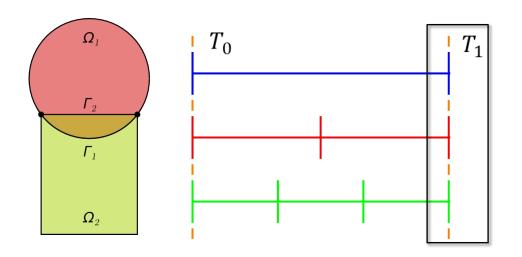
Time integrator for Ω_{γ}

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

Step 2: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ_2 at times $T_i + n\Delta t_2$.

Model PDE:
$$\begin{cases} \dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f}, & \text{in } \Omega \\ \boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{g}(t), & \text{on } \partial\Omega \\ \boldsymbol{u}(\boldsymbol{x},0) = \boldsymbol{u}_0, & \text{in } \Omega \end{cases}$$



Controller time stepper

Time integrator for Ω_1

Time integrator for Ω_{γ}

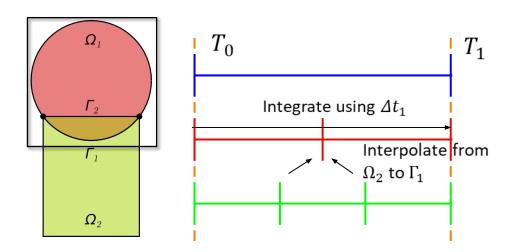
Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

<u>Step 2</u>: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ_2 at times $T_i + n\Delta t_2$.

Step 3: Check for convergence at time T_{i+1} .

Model PDE:
$$\begin{cases} \dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f}, & \text{in } \Omega \\ \boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{g}(t), & \text{on } \partial\Omega \\ \boldsymbol{u}(\boldsymbol{x},0) = \boldsymbol{u}_0, & \text{in } \Omega \end{cases}$$



Controller time stepper

Time integrator for $\Omega_{\rm l}$

Time integrator for Ω_2

Step 0: Initialize i = 0 (controller time index).

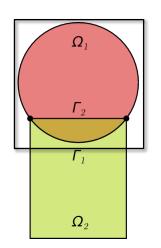
Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

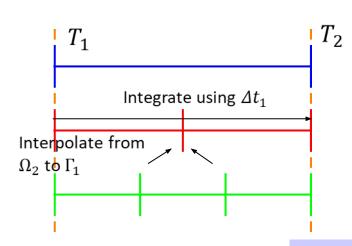
Step 2: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ_2 at times $T_i + n\Delta t_2$.

Step 3: Check for convergence at time T_{i+1} .

➤ If unconverged, return to Step 1.

Model PDE:
$$\begin{cases} \dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f}, & \text{in } \Omega \\ \boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{g}(t), & \text{on } \partial\Omega \\ \boldsymbol{u}(\boldsymbol{x},0) = \boldsymbol{u}_0, & \text{in } \Omega \end{cases}$$





Controller time stepper

Time integrator for Ω_1

Time integrator for Ω_{γ}

Step 0: Initialize i = 0 (controller time index).

Can use *different integrators* with different time steps within each domain!

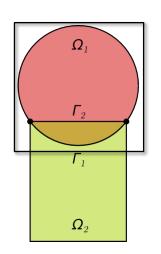
Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

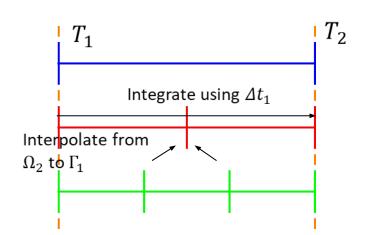
Step 2: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ_2 at times $T_i + n\Delta t_2$.

Step 3: Check for convergence at time T_{i+1} .

- If unconverged, return to Step 1.
- \triangleright If converged, set i = i + 1 and return to Step 1.

Model PDE:
$$\begin{cases} \dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f}, & \text{in } \Omega \\ \boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{g}(t), & \text{on } \partial\Omega \\ \boldsymbol{u}(\boldsymbol{x},0) = \boldsymbol{u}_0, & \text{in } \Omega \end{cases}$$





Controller time stepper

Time integrator for Ω_1

Time integrator for Ω_{γ}

Step 0: Initialize i = 0 (controller time index).

Time-stepping procedure is **equivalent** to doing Schwarz on **space-time domain** [Mota *et al.* 2022].

Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ_1 at times $T_i + n\Delta t_1$.

<u>Step 2</u>: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ_2 at times $T_i + n\Delta t_2$.

Step 3: Check for convergence at time T_{i+1} .

- ➤ If unconverged, return to Step 1.
- \triangleright If converged, set i = i + 1 and return to Step 1.

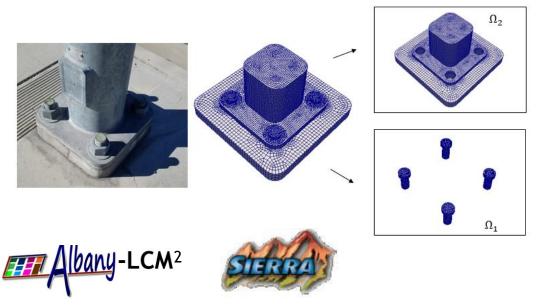
Model PDE:
$$\begin{cases} \dot{\boldsymbol{u}} + N(\boldsymbol{u}) = \boldsymbol{f}, & \text{in } \Omega \\ \boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{g}(t), & \text{on } \partial\Omega \\ \boldsymbol{u}(\boldsymbol{x},0) = \boldsymbol{u}_0, & \text{in } \Omega \end{cases}$$

Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics¹

Model Solid Mechanics PDEs:

Quasistatic: Div $m{P}+
ho_0m{B}=m{0}$ in Ω

Dynamic: Div $m{P} +
ho_0 m{B} =
ho_0 \ddot{m{\varphi}}$ in $\Omega imes I$

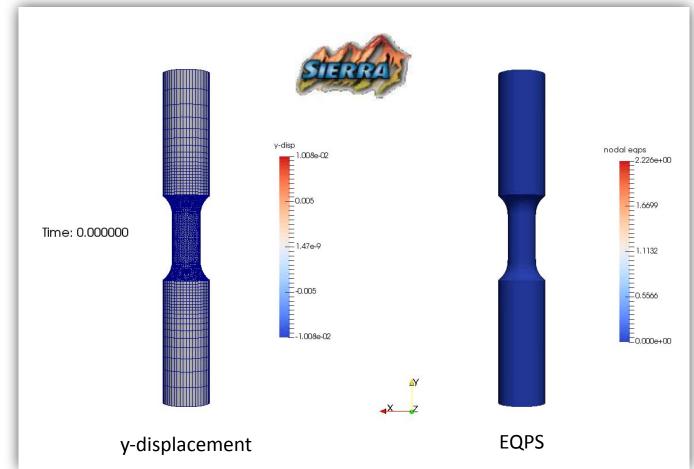


- "Plug-and-play" framework:
 - Ability to couple regions with *different non-conformal meshes*, *different element types* and *different levels of refinement* to simplify task of *meshing complex geometries*.
 - ☐ Ability to use *different solvers/time-integrators* in different regions.

Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics¹

\$130e-05 0.0025 0.005 0.0075 1.000e-

Schwarz



y-displacement EQPS

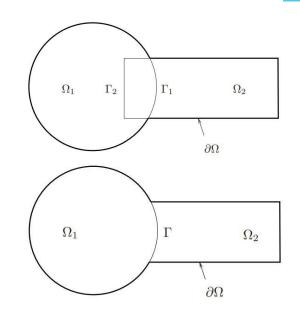
Figure above: tension specimen simulation coupling composite TET10 elements with HEX elements in Sierra/SM.

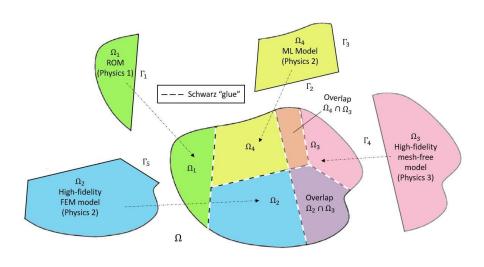
Figures right: bolted joint simulation coupling composite TET10 elements with HEX elements in Sierra/SM.

¹ Mota *et al*. 2017; Mota *et al*. 2022.

Outline

- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM# and ROM-ROM Coupling
- Numerical Examples
 - 2D Burgers Equation
 - 2D Shallow Water Equations
 - ☐ Teaser: 2D Euler Equations Riemann Problem
- Summary & Future Work



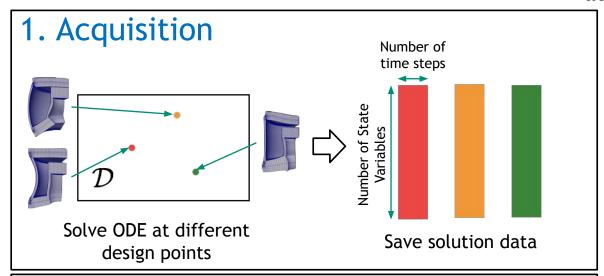


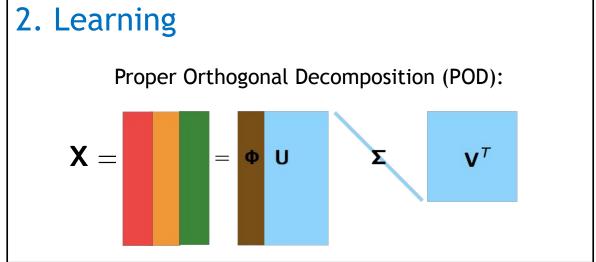
^{*}Full-Order Model. *Reduced Order Model.

Projection-Based Model Order Reduction via the POD/LSPG* Method

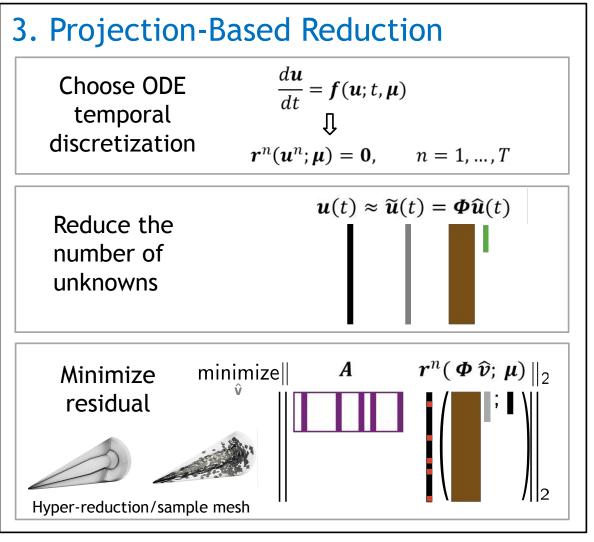
$$\frac{du}{dt} = f(u; t, \mu)$$

* Least-Squares Petrov-Galerkin





ROM = projection-based Reduced Order Model



HROM = Hyper-reduced ROM

Schwarz Extensions to FOM-ROM and ROM-ROM Couplings

Choice of domain decomposition

- Overlapping vs. non-overlapping domain decomposition?
 - ☐ Non-overlapping more flexible but typically requires more Schwarz iterations
- FOM vs. ROM subdomain assignment?
- ☐ Do not assign ROM to subdomains where they have no hope of approximating solution

Snapshot collection and reduced basis construction

Are subdomains simulated independently in each subdomains or together?

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

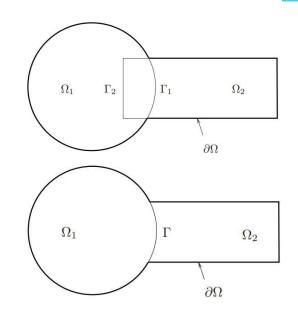
- Strong vs. weak BC enforcement?
 - ☐ Strong BC enforcement difficult for some models (e.g., cell-centered finite volume, PINNs)
- Optimizing parameters in Schwarz BCs for non-overlapping Schwarz?

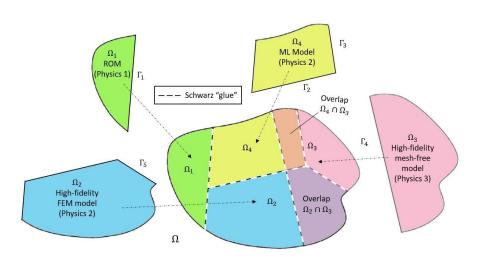
Choice of hyper-reduction

- What hyper-reduction method to use?
 - Application may require particular method (e.g., ECSW for solid mechanics problems)
- How to sample Schwarz boundaries in applying hyper-reduction?
 - ☐ Need to have enough sample mesh points at Schwarz boundaries to apply Schwarz

3 Outline

- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM# and ROM-ROM Coupling
- Numerical Examples
 - 2D Burgers Equation
 - ☐ 2D Shallow Water Equations
 - ☐ Teaser: 2D Euler Equations Riemann Problem
- Summary & Future Work

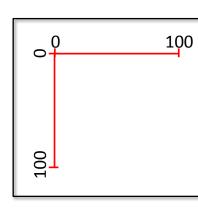


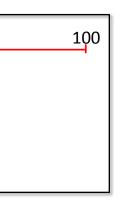


^{*}Full-Order Model. *Reduced Order Model.

2D Inviscid Burgers Equation

Popular analog for fluid problems where shocks are possible, and particularly difficult for conventional projection-based ROMs







25

50

25

50

75

Problem setup:

- $\Omega = (0,100)^2, t \in [0,25]$
- Two parameters $\mu = (\mu_1, \mu_2)$. Training: uniform sampling of $\mu_1 \times \mu_2 = [4.25, 5.50] \times [0.015, 0.03]$ by a 3 × 3 grid. **Testing:** query unsampled point $\mu = [4.75, 0.02]$

Schwarz Coupling Details

1

Choice of domain decomposition

- Overlapping DD of Ω into 4 subdomains coupled via multiplicative Schwarz
- Solution in Ω_1 is **most difficult** to capture by ROM

Snapshot collection and reduced basis construction

• Single-domain FOM on Ω used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

• BCs imposed strongly via Method 1 of [Gunzburger et al., 2007] at indices i_{Dir}

$$q(t) \approx \overline{q} + \Phi \widehat{q}(t)$$

- \triangleright POD modes made to satisfy homogeneous DBCs: $\Phi(i_{Dir},:) = 0$
- \triangleright BCs imposed by modifying $\overline{q}: \overline{q}(i_{\mathrm{Dir}}) \leftarrow \chi_q$

Choice of hyper-reduction

- Energy Conserving Sampling & Weighting (ECSW) method for hyper-reduction
- All points on Schwarz boundaries are included in the sample mesh

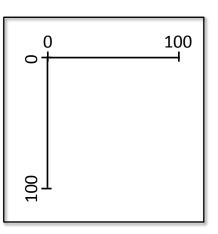


Figure above: 4 subdomain overlapping DD

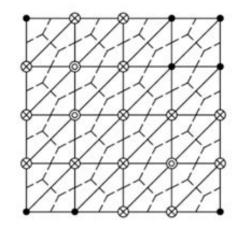
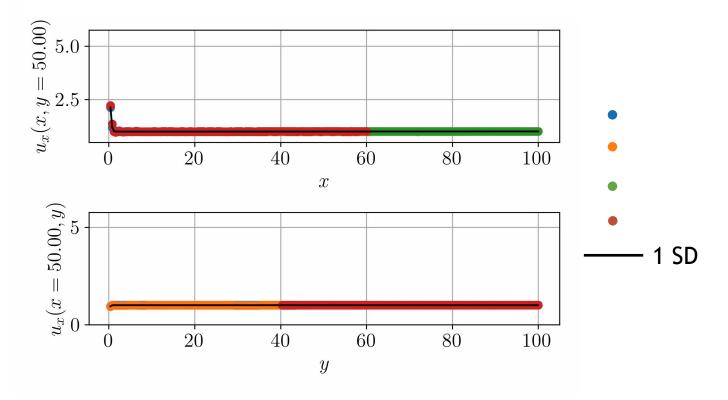
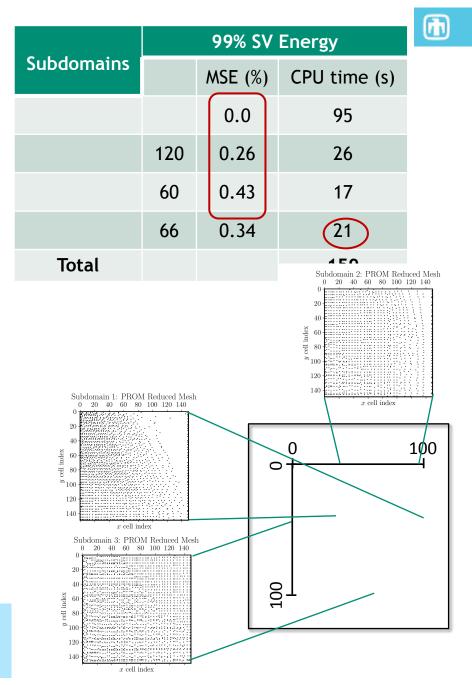


Figure above: ECSW augmented reduced mesh

FOM-HROM-HROM Coupling

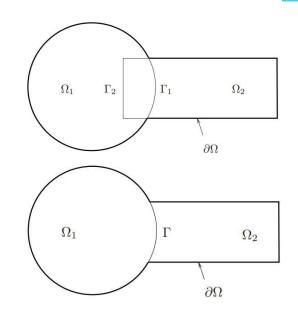


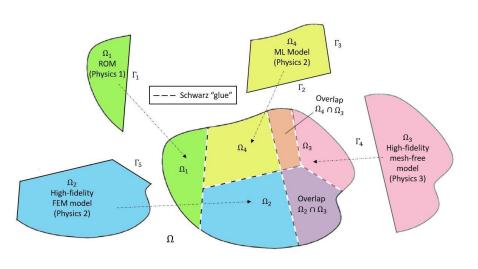
Further speedups possible via code optimizations, additive Schwarz and reduction of # sample mesh points.



27 Outline

- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM# and ROM-ROM Coupling
- Numerical Examples
 - 2D Burgers Equation
 - □ 2D Shallow Water Equations
 - ☐ Teaser: 2D Euler Equations Riemann Problem
- Summary & Future Work

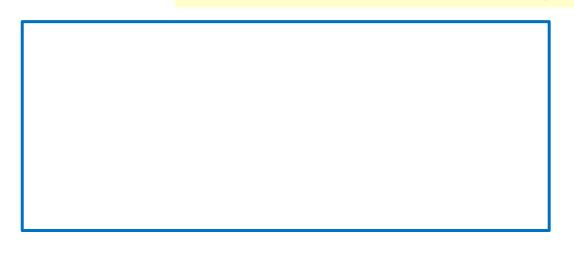


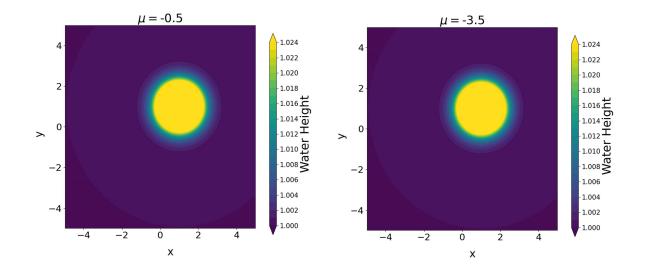


^{*}Full-Order Model. *Reduced Order Model.

2D Shallow Water Equations (SWE)

Hyperbolic PDEs modeling wave propagation below a pressure surface in a fluid (e.g., atmosphere, ocean).





Schwarz Coupling Details

Green: different from Burgers' problem

Choice of domain decomposition

- Non-overlapping DD of Ω into 4 subdomains coupled via additive Schwarz
 - > OpenMP parallelism with 1 thread/subdomain
- All-ROM or All-HROM coupling via Pressio*

Snapshot collection and reduced basis construction

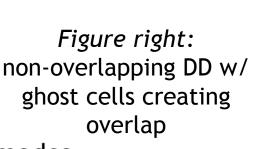
• Single-domain FOM on Ω used to generate snapshots/POD modes

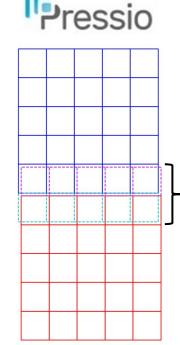
Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

- BCs are imposed approximately by fictitious ghost cell states
 - > Implementing Neumann and Robin BCs is challenging
- Ghost cells introduce some overlap even with non-overlapping DD
 - ➤ ⇒ Dirichlet-Dirichlet non-overlapping Schwarz is stable/convergent!

Choice of hyper-reduction

- Collocation for hyper-reduction: min residual at small subset DOFs
- Assume fixed budget of sample mesh points at Schwarz boundaries





Ghost

cells

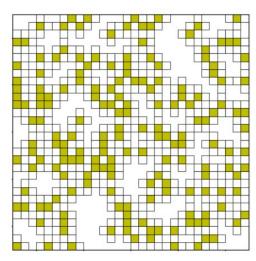
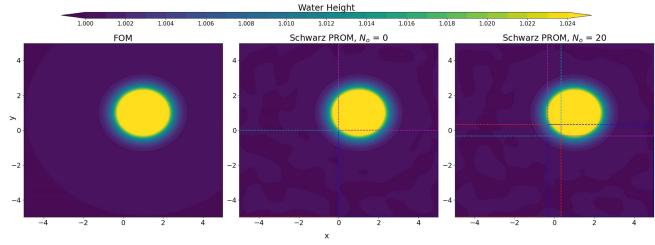
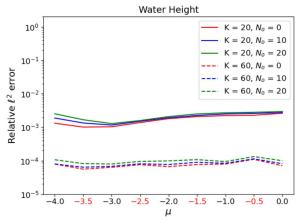


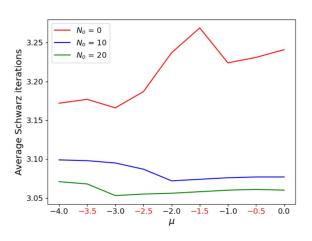
Figure above: sample mesh (yellow) and stencil (white) cells

*https://github.com/Pressio/pressio-demoapps

Schwarz All-ROM Domain Overlap Study



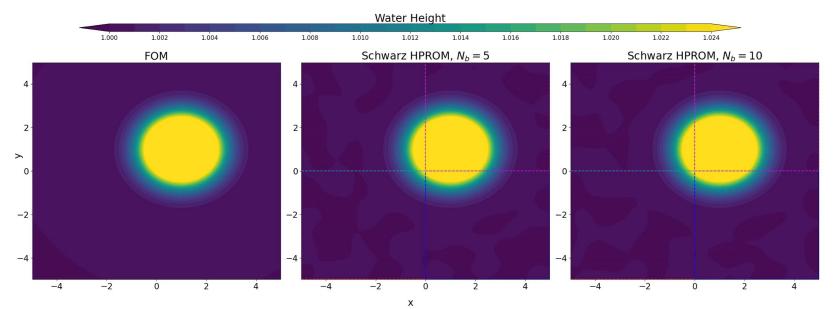


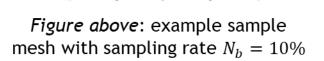


Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many **Schwarz boundary points** need to be included in **sample mesh** when performing HROM coupling?

• Naïve/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

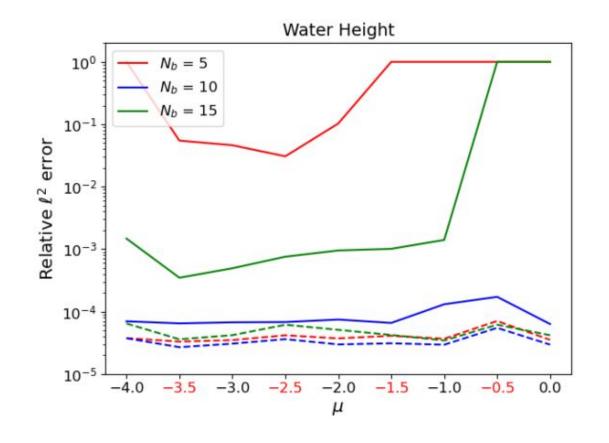


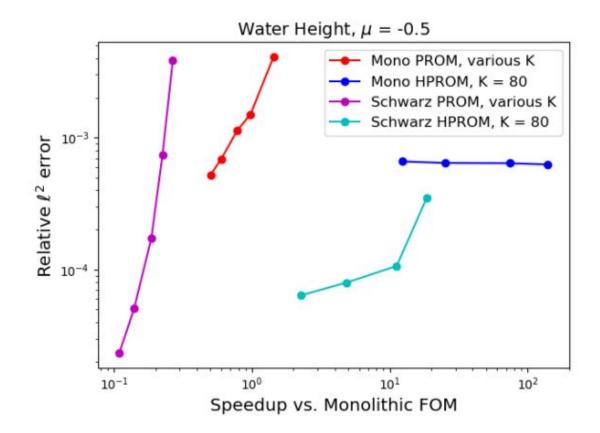


Movie above: FOM (left), all HROM with $N_b=5\%$ (middle) and all HROM with $N_b=10\%$ (left). ROMs have K=100 modes and $N_S=0.5\%N$ sample mesh points.

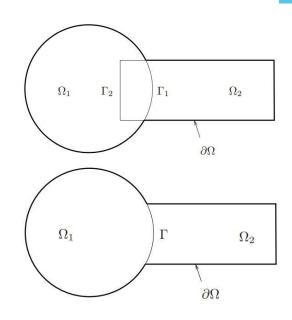
- Including too many Schwarz boundary points (N_b) in sample mesh given fixed budget of N_s sample mesh points may lead to too few sample mesh points in interior
- For SWE problem, we can get away with $\sim 10\%$ boundary sampling (movie above, right-most frame)

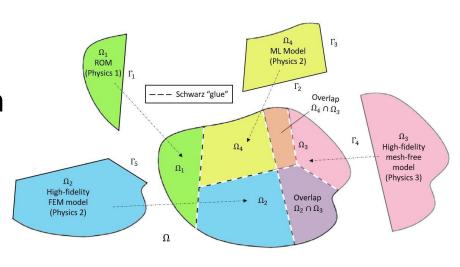
Coupled HROM Performance





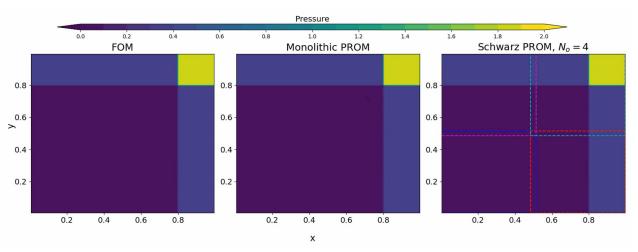
- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM# and ROM-ROM Coupling
- Numerical Examples
 - ☐ 2D Burgers Equation
 - 2D Shallow Water Equations
 - ☐ Teaser: 2D Euler Equations Riemann Problem
- Summary & Future Work



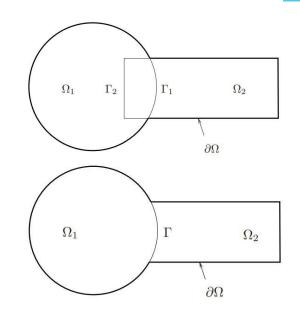


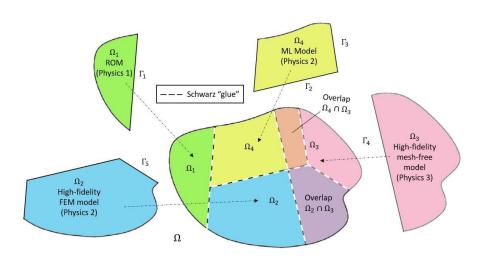
^{*}Full-Order Model. *Reduced Order Model.

Teaser: 2D Euler Equations Riemann Problem



- The Schwarz Alternating Method for Domain Decomposition-Based Coupling
- Extension to FOM*-ROM# and ROM-ROM Coupling
- Numerical Examples
 - ☐ 2D Burgers Equation
 - 2D Shallow Water Equations
 - ☐ Teaser: 2D Euler Equations Riemann Problem
- Summary & Future Work





^{*}Full-Order Model. *Reduced Order Model.

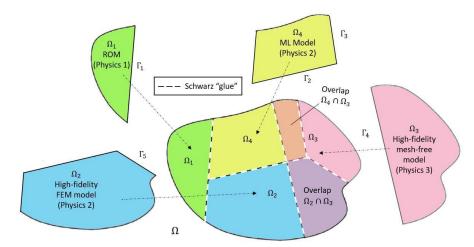
Summary and Future Work

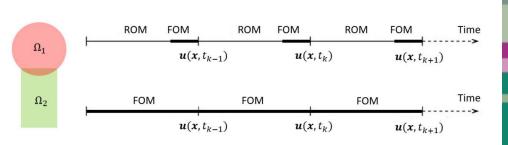
(1)

- Schwarz has been **demonstrated** for **coupling** of FOMs and (H)ROMs
- Computational gains can be achieved by coupling HROMs and using the additive Schwarz variant

Ongoing & future work:

- Extension to **other applications** (fasteners, laser welds)
- Rigorous analysis of why Dirichlet-Dirichlet BC "work" when employing non-overlapping Schwarz with discretizations that employ ghost cells
- Learning of "optimal" transmission conditions to ensure structure preservation
- Extension of Schwarz to enabling coupling of **non-intrusive ROMs** (e.g., DMD, OpInf, Neural Networks)
- Development of automated criteria to determine appropriate use of less refined or reduced-order models without sacrificing accuracy, enabling real-time transitions between different model fidelities → New project: AHeaD LDRD





^{*} https://pressio.github.io

Team & Acknowledgments

Irina Tezaur

Chris Wentland

Francesco Rizzi

Joshua Barnett

Alejandro Mota

Will Snyder
Former Intern from
Virginia Tech
[Schwarz + PINNs]

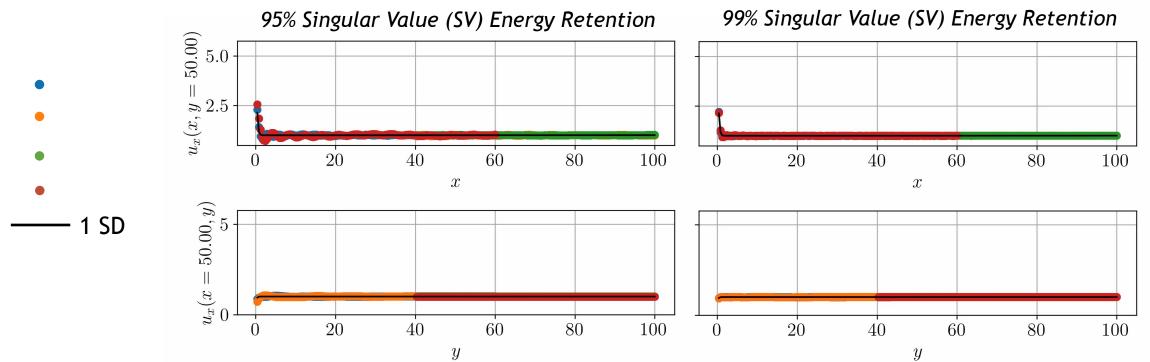
lan Moore Intern from Virginia Tech [Schwarz + OpInf]

- [1] A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", Comput. Meth. Appl. Mech. Engng. 319 (2017), 19-51.
- [2] A. Mota, I. Tezaur, G. Phlipot. "The Schwarz Alternating Method for Dynamic Solid Mechanics", Comput. Meth. Appl. Mech. Engng. 121 (21) (2022) 5036-5071.
- [3] J. Barnett, I. Tezaur, A. Mota. "The Schwarz alternating method for the seamless coupling of nonlinear reduced order models and full order models", ArXiv pre-print, 2022. https://arxiv.org/abs/2210.12551
- [4] W. Snyder, I. Tezaur, C. Wentland. "Domain decomposition-based coupling of physics-informed neural networks via the Schwarz alternating method", ArXiv pre-print, 2023. https://arxiv.org/abs/2311.00224
- [5] A. Mota, D. Koliesnikova, I. Tezaur. "A Fundamentally New Coupled Approach to Contact Mechanics via the Dirichlet-Neumann Schwarz Alternating Method", ArXiv pre-print, 2023. https://arxiv.org/abs/2311.05643

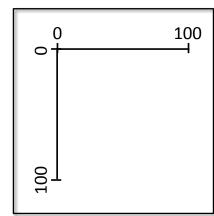
Email: ikalash@sandia.gov URL: www.sandia.gov/~ikalash

Start of Backup Slides

All-ROM Coupling



Subdomains	95% SV Energy			99% SV Energy		
		MSE (%)	CPU time (s)		MSE (%)	CPU time (s)
	57	1.1	85	146	0.18	295
	44	1.2	56	120	0.18	216
	24	1.4	43	60	0.16	89
	32	1.9	61	66	0.25	100
Total			245			700



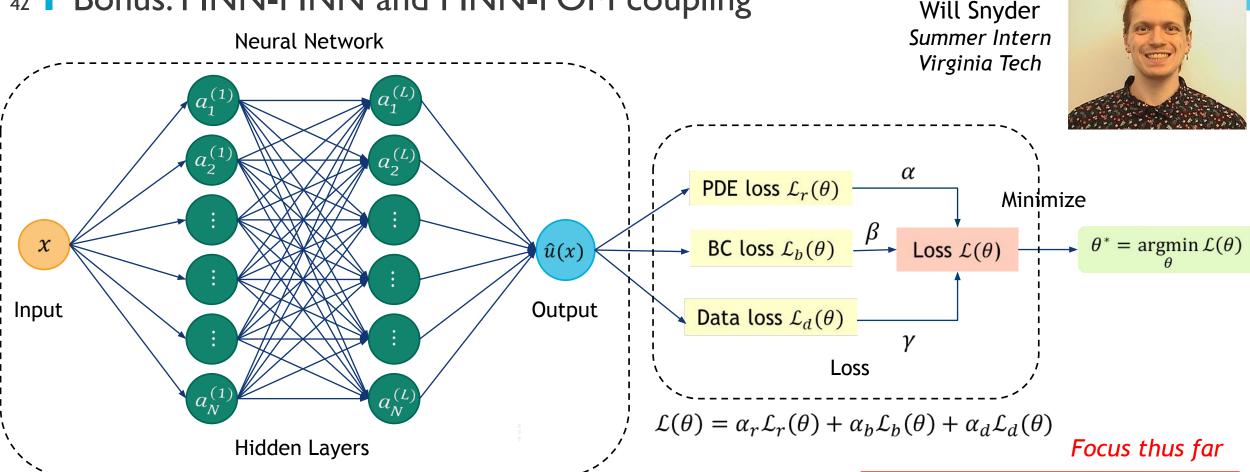
(1)

Summary

The **Schwarz alternating method** has been developed for concurrent multi-scale coupling of **conventional** and **data-driven models**.

- Coupling is *concurrent* (two-way).
- Ease of implementation into existing massively-parallel HPC codes.
- **Plug-and-play** framework: simplifies task of meshing complex geometries!
 - Ability to couple regions with different non-conformal meshes, different element types and different levels of refinement.
 - Ability to use *different solvers* (including ROM/FOM) and time-integrators in different regions.
- Scalable, fast, robust on real engineering problems
- Coupling does not introduce *nonphysical artifacts*.
- Theoretical convergence properties/guarantees.

Bonus: PINN-PINN and PINN-FOM coupling



<u>Goal:</u> investigate the use of the Schwarz alternating method as a means to couple **Physics-Informed Neural Networks (PINNs)**

Related work: Li et al., 2019, Li et al., 2020, Wang et al., 2022.

Scenario 1: use Schwarz to train subdomain PINNs (offline)

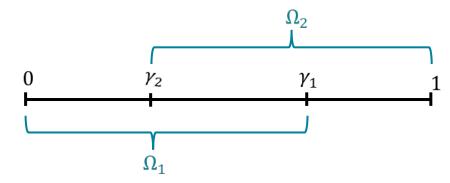
Scenario 2: use Schwarz to couple pre-trained subdomain PINNs/NNs (online)

Bonus: PINN-PINN coupling

1D steady **advection-diffusion** equation on $\Omega = [0,1]$:

$$u_x - vu_{xx} = 1$$
, $u(0) = u(1) = 0$

PINNs are **notoriously difficult to train** for higher Peclet numbers!



Overlapping DD: $\Omega = \Omega_1 \cup \Omega_2$ with boundary $\partial \Omega = \{0,1\}$

→ Can Schwarz help?

$$\mathcal{L}_{r,i}(\theta) = MSE\left(-\nu\nabla_x^2 NN_{\Omega_i}(x,\theta) + \nabla_x NN_{\Omega_i}(x,\theta) - 1\right)$$

$$\mathcal{L}_{b,i}(\theta) = MSE\left(NN_{\Omega_i}(\partial\Omega,\theta)\right) + MSE\left(NN_{\Omega_i}(\gamma_i,\theta) - NN_{\Omega_j}(\gamma_i,\theta)\right)$$

Schwarz PINN training algorithm:

Loop over subdomains Ω_i until convergence of Schwarz method

Train PINN in Ω_i with loss $\mathcal{L}_i(\theta) = \alpha \mathcal{L}_{r,i}(\theta) + \beta \mathcal{L}_{b,i}(\theta) + \gamma \mathcal{L}_{d,i}(\theta)$

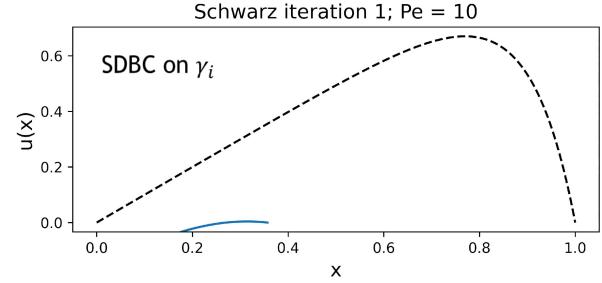
Communicate Dirichlet data between neighboring subdomains

Update boundary data on γ_i from neighboring subdomains

If strong enforcement of Dirichlet BC (SDBC), set $\hat{u}_{\Omega_i}(x,\theta) = NN_{\Omega_i}(x,\theta)$

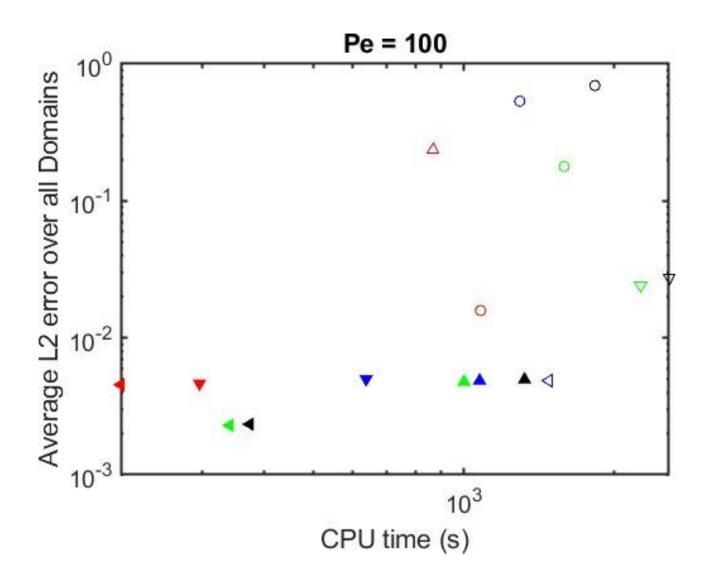
If weak enforcement of Dirichlet BC (WDBC), set $\beta = 0$ and $\hat{u}_{\Omega_i}(x,\theta) = v(x)NN_{\Omega_i}(x,\theta) + \psi(x)\hat{u}_{\Omega_j}(\gamma_j,\theta)$ where v(x) is chosen s.t. $v(0) = v(\gamma_i) = v(1) = 0$ and $\psi(x)$ is chosen s.t. $v(\gamma_i) = 1$

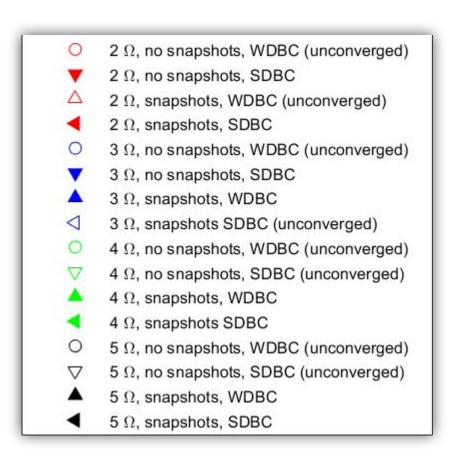
Bonus: PINN-PINN coupling



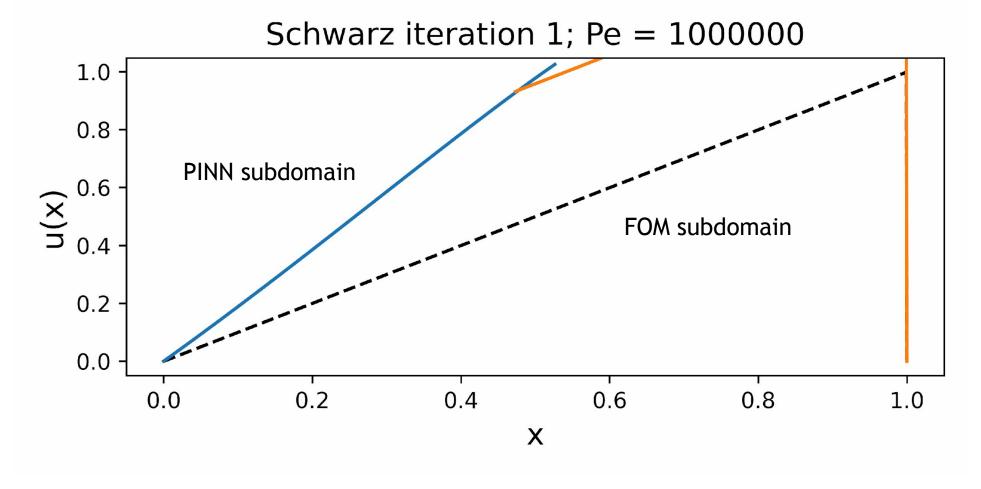
- How Dirichlet boundary conditions are handled has a large impact on PINN convergence
- Convergence not improved in general with increasing overlap
- Increasing # subdomains in general will increase CPU time

Bonus: PINN-PINN coupling





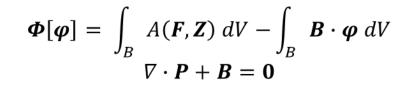
 Using SDBCs and data loss helps with PINN/NN convergence and accuracy



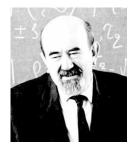
- PINN-FOM coupling gives rapid PINN convergence for arbitrarily high Peclet numbers
- PINN-FOM couplings works with both WDBC and SDBC configurations

Using the Schwarz alternating as a *discretization method* for PDEs is natural idea with a sound *theoretical foundation*.

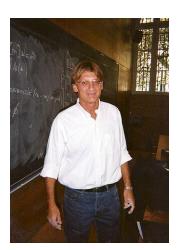
- <u>S.L. Sobolev (1936)</u>: posed Schwarz method for *linear elasticity* in variational form and *proved method's convergence* by proposing a convergent sequence of energy functionals.
- S.G. Mikhlin (1951): proved convergence of Schwarz method for general linear elliptic PDEs.
- P.-L. Lions (1988): studied convergence of Schwarz for nonlinear monotone elliptic problems using max principle.
- **A. Mota, I. Tezaur, C. Alleman (2017):** proved *convergence* of the alternating Schwarz method for *finite deformation quasi-static nonlinear PDEs* (with energy functional $\Phi[\varphi]$) with a *geometric convergence rate.*



S.L. Sobolev (1908 – 1989)



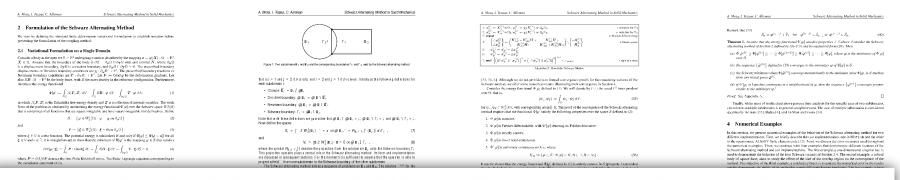
S.G. Mikhlin (1908 – 1990)



P.- L. Lions (1956-)

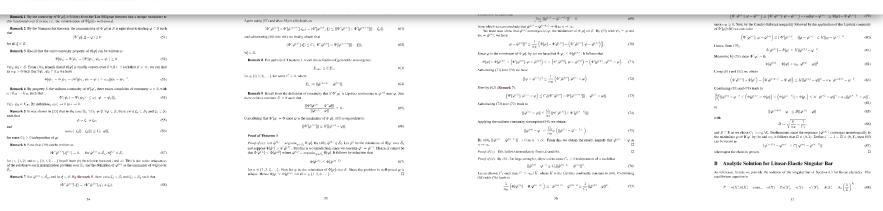
A. Mota, I. Tezaur, C. Alleman

Convergence Proof*



Theorem 1. Assume that the energy functional $\Phi[\varphi]$ satisfies properties 1–5 above. Consider the Schwarz alternating method of Section 2 defined by (9)–(13) and its equivalent form (39). Then

- (a) $\Phi[\tilde{\varphi}^{(0)}] \geq \Phi[\tilde{\varphi}^{(1)}] \geq \cdots \geq \Phi[\tilde{\varphi}^{(n-1)}] \geq \Phi[\tilde{\varphi}^{(n)}] \geq \cdots \geq \Phi[\varphi]$, where φ is the minimizer of $\Phi[\varphi]$ over S.
- (b) The sequence $\{\tilde{\varphi}^{(n)}\}\$ defined in (39) converges to the minimizer φ of $\Phi[\varphi]$ in S.
- (c) The Schwarz minimum values $\Phi[\tilde{\varphi}^{(n)}]$ converge monotonically to the minimum value $\Phi[\varphi]$ in S starting from any initial guess $\tilde{\varphi}^{(0)}$.



^{*}A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.

Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

- Like for quasistatics, dynamic alternating Schwarz method converges provided each single-domain problem is **well-posed** and **overlap region** is **non-empty**, under some **conditions** on Δt .
- Well-posedness for the dynamic problem requires that action functional $S[\varphi] := \int_{I} \int_{\Omega} L(\varphi, \dot{\varphi}) dV dt$ be strictly convex or strictly concave, where $L(\varphi, \dot{\varphi}) := T(\dot{\varphi}) + V(\varphi)$ is the Lagrangian.
 - \succ This is studied by looking at its second variation $\delta^2 S[\boldsymbol{\varphi}_h]$
- We can show assuming a Newmark time-integration scheme that for the fully-discrete problem:

$$\delta^2 S[\boldsymbol{\varphi}_h] = \boldsymbol{x}^T \left[\frac{\gamma^2}{(\beta \Delta t)^2} \boldsymbol{M} - \boldsymbol{K} \right] \boldsymbol{x}$$

- $\triangleright \delta^2 S[\boldsymbol{\varphi}_h]$ can always be made positive by choosing a *sufficiently small* Δt
- \triangleright Numerical experiments reveal that Δt requirements for **stability/accuracy** typically lead to automatic satisfaction of this bound.

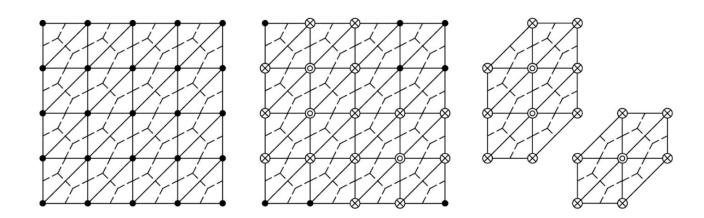
Energy-Conserving Sampling and Weighting (ECSW)

Project-then-approximate paradigm (as opposed to approximate-then-project)

$$r_k(q_k, t) = W^T r(\tilde{u}, t)$$

$$= \sum_{e \in \mathcal{E}} W^T L_e^T r_e(L_e + \tilde{u}, t)$$

- $L_e \in \{0,1\}^{d_e \times N}$ where d_e is the **number of degrees of freedom** associated with each mesh element (this is in the context of meshes used in first-order hyperbolic problems where there are N_e mesh elements)
- $L_{e^+} \in \{0,1\}^{d_e \times N}$ selects degrees of freedom necessary for flux reconstruction
- Equality can be relaxed



Augmented reduced mesh:

represents a selected node attached to a selected element; and \otimes represents an added node to enable the full representation of the computational stencil at the selected node/element

ECSW: Generating the Reduced Mesh and Weights

- Using a subset of the same snapshots $u_i, i \in 1, ..., n_h$ used to generate the **state basis** V, we can train the reduced mesh
- Snapshots are first projected onto their associated basis and then reconstructed

$$c_{se} = W^T L_e^T r_e \left(L_{e^+} \left(u_{ref} + V V^T \left(u_s - u_{ref} \right) \right), t \right) \in \mathbb{R}^n$$

$$d_s = r_k(\tilde{u}, t) \in \mathbb{R}^n, \quad s = 1, \dots, n_h$$

We can then form the system

$$\boldsymbol{C} = \begin{pmatrix} c_{11} & \dots & c_{1N_e} \\ \vdots & \ddots & \vdots \\ c_{n_h 1} & \dots & c_{n_h N_e} \end{pmatrix}, \qquad \boldsymbol{d} = \begin{pmatrix} d_1 \\ \vdots \\ d_{n_h} \end{pmatrix}$$

- Where $C\xi = d, \xi \in \mathbb{R}^{N_e}$, $\xi = 1$ must be the solution
- Further relax the equality to yield non-negative least-squares problem:

$$\boldsymbol{\xi} = \arg\min_{\boldsymbol{x} \in \mathbb{R}^n} ||\boldsymbol{C}\boldsymbol{x} - \boldsymbol{d}||_2 \text{ subject to } \boldsymbol{x} \geq \boldsymbol{0}$$

 Solve the above optimization problem using a non-negative least squares solver with an early termination condition to promote sparsity of the vector ξ