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Motivation: multi-scale & multi-physics coupling
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Complex System Model

PDEs, ODEs

Nonlocal integral

Classical DFT
Atomistic, ...

Traditional Methods

Mesh-based (FE, FV, FD)
Meshless (SPH, MLS)
Implicit, explicit
Eulerian, Lagrangian...

There exist established rigorous mathematical theories for
coupling multi-scale and multi-physics components based on
traditional discretization methods (“Full Order Models” or FOMs).
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Coupled Numerical Model

Monolithic (Lagrange multipliers)
Partitioned (loose) coupling
Iterative (Schwarz, optimization)




3 | Motivation: multi-scale & multi-physics coupling

™ There exist established rigorous mathematical theories for
'::__ coupling multi-scale and multi-physics components based on
~ traditional discretization methods (“Full Order Models” or FOMs).

e 2 /
, Y
L L
o
. )

Complex System Model Traditional Methods Coupled Numerical Model Traditional-+-Data-Driven Methods

« PDEs, ODEs * Mesh-based (FE, FV, FD) * Monolithic (Lagrange multipliers) * PINNs
* Nonlocal integral * Meshless (SPH, MLS) « Partitioned (loose) coupling * Neural ODEs
« Classical DFT « Implicit, explicit « lterative (Schwarz, optimization) * Projection-based ROMs, ...

Atomistic, ... Eulerian, Lagrangian, ...

Unfortunately, existing algorithmic and software infrastructures are ill-equipped °0
to handle plug-and-play integration of non-traditional, data-driven models! -4
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. | Flexible Heterogeneous Numerical Methods (fHNM) Project &7R\D
Principal research objective: I

* Discover mathematical principles guiding the assembly of standard and data-driven numerical
models in stable, accurate and physically consistent ways.

Principal research goals:
e “Mix-and-match” standard and data-driven models from three-classes
[l Class A: projection-based reduced order models (ROMs) | This talk.
[] Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)
[J Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

» Ensure well-posedness & physical consistency of
resulting heterogeneous models.

» Solve such heterogeneous models efficiently.

— — — Schwarz “glue”

Three coupling methods:
[  Alternating Schwarz-based coupling | This talk.

« Optimization-based coupling
« Coupling via generalized mortar methods

Q3 N

High-fidelity  \
--{= mesh-free )
model

(Physics 3) //
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The Schwarz Alternating Method for Domain
Decomposition-Based Coupling

Extension to FOM*-ROM* and ROM-ROM Coupling
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Numerical Examples )

0 2D Burgers Equation
0 2D Shallow Water Equations

0 Teaser: 2D Euler Equations Riemann Problem
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\ High-fidelity
A\ --4~ mesh-free )

Summary & Future Work

*Full-Order Model. *Reduced Order Model.



s I Outline

e The Schwarz Alternating Method for Domain
Decomposition-Based Coupling

» Extension to FOM*-ROM* and ROM-ROM Coupling
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* Numerical Examples )

0 2D Burgers Equation
0 2D Shallow Water Equations

0 Teaser: 2D Euler Equations Riemann Problem

Q5 \
\ High-fidelity ~ \
\ --4~ mesh-free )

 Summary & Future Work

*Full-Order Model. *Reduced Order Model.



7 I Schwarz Alternating Method for Domain Decomposition

Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

« Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods

to solve linear algebraic equations.

Idea behind this work: using the Schwarz alternating method as a discretization

M

non-overlapping
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\
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method for solving multi-scale or multi-physics partial differential equations (PDEs).



s I How We Use the Schwarz Alternating Method

AS A PRECONDITIONER
FOR THE LINEARIZED
SYSTEM

AS A SOLVER FOR THE
COUPLED

FULLY NONLINEAR
PROBLEM
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Overlapping Domain Decomposition

(N (™) =f,ing,

u§n+1) =g, on aﬂl\rl

(n+1) _ ()
& u1 = u2

AN

on I;

Spatial Coupling via (Multiplicative) Alternating Schwarz

Model PDE:

( N(ugnu)) = f,inQ, B0 >r1

(n+1)

Q2

N

u, =g, on aﬂz\rz \

(n+1) _ _ (n+1)
(U2 =u

on [, 09

* Dirichlet-Dirichlet transmission BCs
[Schwarz 1870; Lions 1988; Mota et
al. 2017; Mota et al. 2022]

Non-overlapping Domain Decomposition

\ ugnﬂ) =g, on d0,\I" \
o
kVugnH) n= Vu§n+1) ‘n,on I



10 I Additional Parallelism via Additive Schwarz

TR : Model PDE:
Multiplicative Overlapping Schwarz Additive Overlapping Schwarz Na) =f, in 0
f . ™

(N (u§n+1)) =f,inQ, N(u§n+1)) —f,inQ, u=g, on 01
1u™V = g, on a0\l 1ul™P =g, onaQ\I;
kugnﬂ) = ugn) on [} kugnﬂ) = ugn) on I}
( 1 . ( 1 .

N (ugn+ )) = f » 1IN ‘QZ N (ug'“' )) = f » 1N QZ 0 Iy >F1 Qs
Y ul™Y =g, ondQ,\N, 1ul*Y =g, on Q,\I, \
WD =y ™D o, D = u®  ony

* Multiplicative Schwarz: solves subdomain problems sequentially (in serial)
e Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later

0 Typically requires a few more Schwarz iterations, but does not degrade accuracy
0 Parallelism helps balance additional cost due to Schwarz iterations

0 Applicable to both overlapping and non-overlapping Schwarz



11 I Time-Advancement Within the Schwarz Framework

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for Q,

Time integrator for Q,

Model PDE:

u+N(u) =f,

u(x,t) = g(t),
u(x,0) = u,,

in
on a1
in N




Time-Advancement Within the Schwarz Framework

Q, - Ty 'T,
Controller time stepper
I, l Integrate using At, l
- Time integrator for Q,
| | |
Q, | |

| Time integrator for Q,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Q; solution from time T; to time T;,; using time-stepper in Q; with time-step A4t;, using
solution in (), interpolated to I'; at times T; + n4t;.

u+Nu)=f, in 0
Model PDE: ) y(x,t) = g(t), on 90




13 I Time-Advancement Within the Schwarz Framework

Q, \ TO \ T1

Interpolate
\ [
, \ <~ O / . fromQ; to I},

Integrate using At,

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for Q,

Time integrator for Q,

Step 1: Advance , solution from time T; to time T;,; using time-stepper in ; with time-step 4t4, using

solution in (), interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;, 4 using time-stepper in Q, with time-step A4t,, using

solution in (), interpolated to I, at times T; + n4t,.

Model PDE:

u+ N(u) =f, in 0
u(x,t) =g(t), on 4.2
u(x,0) = u,, in 0




14 I Time-Advancement Within the Schwarz Framework

Q, T, T
0 1
Controller time stepper
I
= I Time integrator for Q,
Gy L
Time integrator for Q,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance ), solution from time T; to time T;,; using time-stepper in ; with time-step 4t4, using
solution in Q, interpolated to I'; at times T; + nAt;.

Step 2: Advance (), solution from time T; to time T,,; using time-stepper in , with time-step 4t,, using
solution in (; interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T; ;. u+ N =f, in 0
Model PDE: u(x,t) =g(), on 00
u(x,0) = u,, in 0
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Time-Advancement Within the Schwarz Framework

Q
1 TO T1
Controller time stepper
r, _ Integrate using At,
Time integrator for
T Interpolate[from 1
1
7N, toTy
Q,

Time integrator for Q,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Q, solution from time T; to time T;,,; using time-stepper in ,; with time-step 4t,, using
solution in (), interpolated to I; at times T; + n4t,;.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in , with time-step 4t,, using
solution in (, interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, . u+ N =f, in 0

> If unconverged, return to Step 1. Model PDE: [ u(x,t) = g(t), on 00
u(x,0) = u,, in
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Time-Advancement Within the Schwarz Framework

Q
1 T1
I, Integrate using At;
s Interpolate from
O, toT TN
Q,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance Q, solution from time T; to time T;,,; using time-stepper in ,; with time-step 4t,, using

solution in Q, interpolated to I'; at times T; + nAt;.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in Q, with time-step 4t,, using

solution in , interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, .
» |If unconverged, return to Step 1.
> If converged, set i = i 4+ 1 and return to Step 1.

T,

Controller time stepper

Time integrator for Q,

Time integrator for Q,

Can use different integrators with

different time steps within each domain!

Model PDE:

i+ N(w) = f,

u(x,t) = g(t),
u(x,0) = u,,

in 1
on a1
in 1




Time-Advancement Within the Schwarz Framework

Q, T1 T2
Controller time stepper
r, Integrate using At;
Time integrator for
T Interpolate from 1
Q, t6 Ty TN
Q,

Time integrator for Q,

Time-stepping procedure is equivalent to doing
Step 0: Initialize i = 0 (controller time index). Schwarz on space-time domain [Mota et al. 2022].

Step 1: Advance Q, solution from time T; to time T;,,; using time-stepper in ,; with time-step 4t,, using
solution in Q, interpolated to I'; at times T; + nAt;.

Step 2: Advance (), solution from time T; to time T;,, using time-stepper in Q, with time-step 4t,, using
solution in , interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T;, . u+ N =f, in 0
> If unconverged, return to Step 1. Model PDE:  J u(x,t) = g(t), on a0

> If converged, set i = i + 1 and return to Step 1. u(x,0) = u,, in 0




s | Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics!

Model Solid Mechanics PDEs:

Quasistaticc DivP +pgB =0 in () ‘
Dynamic: DivP +poB =pgpp in QxI

e “Plug-and-play” framework:

0 Ability to couple regions with different non-conformal meshes, different element types
and different levels of refinement to simplify task of meshing complex geometries.

0 Ability to use different solvers/time-integrators in different regions.

" Mota et al. 2017; Mota et al. 2022. ? https://github.com/sandialabs/LCM.



https://github.com/sandialabs/LCM.git

Schwarz for Multiscale FOM-FOM Coupling in Solid Mechanics!

y-disp nodal eqps
2.226e+00

o
8
8

Time: 0.000000

1.47e9 11132

0.005

g

MIIIIIIIIIIIHIIIIIIII'IIIM
mm”lmnlnm||Hllllm

-1.008e-02 0.000e+00

y-displacement EQPS

Figure above: tension specimen simulation coupling
composite TET10 elements with HEX elements in Sierra/SM.

Figures right: bolted joint simulation coupling composite
TET10 elements with HEX elements in Sierra/SM.

v Schwarz

' . Schwarz

" Mota et al. 2017; Mota et al

. 2022.
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The Schwarz Alternating Method for Domain
Decomposition-Based Coupling

e Extension to FOM*-ROM# and ROM-ROM Coupling
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Numerical Examples )

0 2D Burgers Equation
0 2D Shallow Water Equations

0 Teaser: 2D Euler Equations Riemann Problem
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\ High-fidelity
A\ --4~ mesh-free )

Summary & Future Work

*Full-Order Model. *Reduced Order Model.



21 | Projection-Based Model Order Reduction via the POD/LSPG* Method

Full Order Model (FOM):

du
E - f(u, tl M)

* Least-Squares Petrov-Galerkin

1. Acquisition

Number of
time steps
>
A
/™ Y
/ S B — -
A PRy = 1 gty S
AN | J{' n 8
w 2
T S L —
il o o g
\\ D £~
i =)
;e z
v

Solve ODE at different

i . Save solution data
design points

2. Learning

Proper Orthogonal Decomposition (POD):

X = = U > v’

3. Projection-Based Reduction
Choose ODE C;_'t‘ = f(w;t, p)
temporal 0
discretization ) =0, n=1,..T
t) = u(t) = Pu(t
Reduce the e} =) ul( )
number of
unknowns
Minimize  minimize|| A r'(@v; p|
residual ’ I]:[[I:I | |
Hyper-reduction/sample mesh

ROM = projection-based Reduced Order Model

HROM = Hyper-reduced ROM



, | Schwarz Extensions to FOM-ROM and ROM-ROM Couplings

Choice of domain decomposition
 Overlapping vs. non-overlapping domain decomposition?
0 Non-overlapping more flexible but typically requires more Schwarz iterations
e FOM vs. ROM subdomain assignment?
0 Do not assign ROM to subdomains where they have no hope of approximating solution
Snapshot collection and reduced basis construction
« Are subdomains simulated independently in each subdomains or together?

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries
e Strong vs. weak BC enforcement?
0 Strong BC enforcement difficult for some models (e.g., cell-centered finite volume, PINNs)
e Optimizing parameters in Schwarz BCs for non-overlapping Schwarz?
Choice of hyper-reduction
« What hyper-reduction method to use?
0 Application may require particular method (e.g., ECSW for solid mechanics problems)
« How to sample Schwarz boundaries in applying hyper-reduction?
0 Need to have enough sample mesh points at Schwarz boundaries to apply Schwarz
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The Schwarz Alternating Method for Domain
Decomposition-Based Coupling

Extension to FOM*-ROM* and ROM-ROM Coupling
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 Numerical Examples Y

0 2D Burgers Equation
0 2D Shallow Water Equations

0 Teaser: 2D Euler Equations Riemann Problem

Q5 \
\ High-fidelity
A\ --4~ mesh-free )

Summary & Future Work

*Full-Order Model. *Reduced Order Model.
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2D Inviscid Burgers Equation

Popular analog for fluid problems where shocks are possible, and

particularly difficult for conventional projection-based ROMs

100

100

Problem setup:

Q= (0,100)?, t € [0, 25]

Two parameters u = (uq, ). Training: uniform sampling
of uy; X u, = [4.25,5.50] x [0.015,0.03] by a 3 x 3 grid.
Testing: query unsampled point u = [4.75, 0.02]

t=20.0

t=12.5

75 1

25 -

25 50 75

t=10.2

t =18.8

25 50 75

—



. | Schwarz Coupling Details

Choice of domain decomposition

« Overlapping DD of Q into 4 subdomains coupled via multiplicative Schwarz
« Solutionin Q, is most difficult to capture by ROM

Snapshot collection and reduced basis construction

» Single-domain FOM on () used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries
« BCs imposed strongly via Method 1 of [Gunzburger et al., 2007] at indices ip;,
q(t) ~ q+ Pq(t)
» POD modes made to satisfy homogeneous DBCs: ®(ip;,:) =0
» BCs imposed by modifying q : q(ipi.) < x4
Choice of hyper-reduction

 Energy Conserving Sampling & Weighting (ECSW) method for hyper-reduction
« All points on Schwarz boundaries are included in the sample mesh

0 1(.)0

100

Figure above: 4 subdomain
overlapping DD

Figure above:
ECSW augmented
reduced mesh



) ‘ FOM-HROM-HROM-HROM Coupling

S
2 5.0
1O
|
= 2.0
) — y
0 20 40 60 80 100
T o
>
=) 4 o
(o
= 15D
I
8 r— e D
\_:2 O ! ! T T T T
3
0 20 40 60 80 100
Y

Further speedups possible via code optimizations,

additive Schwarz and reduction of # sample mesh points.

99% SV Energy
Subdomains

120
60
66

Total

in 1: PROM Reduced Mesh
40 60 80 100 120 140

MSE (%) CPU time (s)

)

0.0 95
0.26 26
0.43 17

034 @

AN

Subdomain 2: PROM Reduced Mesh
0 20 40 60 80 100 120 140
0

cell index

Subdomain 3: PROM Reduced Mesh
0 20 40 60 80 100 120 140

Z s0f
=100

120

140 1
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The Schwarz Alternating Method for Domain
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0 2D Burgers Equation
0 2D Shallow Water Equations

0 Teaser: 2D Euler Equations Riemann Problem
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Summary & Future Work

*Full-Order Model. *Reduced Order Model.



28 I 2D Shallow Water Equations (SVVE)

Hyperbolic PDEs modeling wave propagation below a pressure
surface in a fluid (e.g., atmosphere, ocean).

S8 558k %%55%58K8K%
Water Height

E’ressio

2885k %553 RR
Water Height



Schwarz Coupling Details

29 Green: different from Burgers’ problem

Choice of domain decomposition

* Non-overlapping DD of Q into 4 subdomains coupled via additive Schwarz
» OpenMP parallelism with 1 thread/subdomain , ,

, , , Figure right:

« All-ROM or All-HROM coupling via Pressio*

ghost cells creating

Snapshot collection and reduced basis construction
overlap

« Single-domain FOM on () used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

non-overlapping DD w/ f

E’ressio

« BCs are imposed approximately by fictitious ghost cell states ==

» Implementing Neumann and Robin BCs is challenging

* Ghost cells introduce some overlap even with non-overlapping DD

» = Dirichlet-Dirichlet non-overlapping Schwarz is stable/convergent!

Choice of hyper-reduction e

« Collocation for hyper-reduction: min residual at small subset DOFs

[

]

“mlE

« Assume fixed budget of sample mesh points at Schwarz boundaries

*https://github.com/Pressio/pressio-demoapps

Figure above: sample mesh
(yellow) and stencil (white) cellsl

Ghost
cells


https://github.com/Pressio/pressio-demoapps
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Schwarz All-ROM Domain Overlap Study

1.000

1.002

FOM

1.004

1.006

1.008

Water Height
1.010 1.012 1.014

Schwarz PROM, N, = 0

1.016

1.018

1.020

1.022 1.024

Schwarz PROM, N, = 20

Relative £2 error

Water Height

100 4

1014

[
o
|

N

._.
5]
3

1044

— K=20,N, =0
— K=20,No =10
— K=20,N, =20
=== K=60,No, =0
- K=60, N, =10
--- K=60, No = 20

1073

40 -35 -30 -25 -2.0 -15 -1.0 -05 0.0
u

Average Schwarz iterations

3.25

3.05 1

-3.0

-25

-2.0

-15

-1.0

-0.5

0.0



., | Schwarz Boundary Sampling for All-HROM Coupling

Key question: how many Schwarz boundary points need to be
included in sample mesh when performing HROM coupling?

* Naive/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Water Height

1.000 1.002 1.004 1.006 1.008 1.010 1.012 1.014 1.016 1018 1.020 1.022 1.024

FOM Schwarz HPROM, N, =5 Schwarz HPROM, N, =10 n* .
. * * . : * ':. " .
9 ’ .o. *a * -4, .‘: " . : . :.'I :
...o . . ... + o o O 1 'a‘
LA T - P - : * * -
o " .o ,0 - -
0 .q.o. . - * - .. .. L . - ‘..

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

B

Figure above: example sample

Movie above: FOM (left), all HROM with N, = 5% (middle) and all HROM with N;, = 10% mesh with sampling rate N, = 10%

(left). ROMs have K = 100 modes and N, = 0.5%N sample mesh points.

Including too many Schwarz boundary points (N;) in sample mesh given fixed budget of N; sample mesh
points may lead to too few sample mesh points in interior

« For SWE problem, we can get away with ~10% boundary sampling (movie above, right-most frame)



. ‘ Coupled HROM Performance

Water Height Water Height, u = -0.5
—e— Mono PROM, various K
—e— Mono HPROM, K = 80
—e— Schwarz PROM, various K
—e— Schwarz HPROM, K = 80
e - 1073
(o) (o)
= = *—e *—eo
Q @
L L
()]
S >
® ©
&’ &’ 10-4 4
10_5 . & . 2 . : : . : .,-1 \: r—r .,o T p—— .'1 \2 r ye—p— ,2
-40 -35 -30 -25 -20 -15 -10 -05 0.0 10 10 10 10

M Speedup vs. Monolithic FOM
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34 | Teaser: 2D Euler Equations Riemann Problem

Pressure

0.8 1.0 12
Monolithic PROM

[@ressio

1fa 2.‘0
Schwarz PROM, N, =4

*Schulz-Rinne, 1993.
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0 2D Burgers Equation
0 2D Shallow Water Equations

0 Teaser: 2D Euler Equations Riemann Problem
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e Summary & Future Work

*Full-Order Model. *Reduced Order Model.



36 1 Summary and Future Work

~€)

~
DORD Sressio

R
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Summary:
« Schwarz has been demonstrated for coupling of FOMs and (H)ROMs
e Computational gains can be achieved by coupling HROMs and using the additive Schwarz variant

Ongoing & future work:

« Extension to other applications (fasteners, laser welds)

e Rigorous analysis of why Dirichlet-Dirichlet BC “work”
when employing non-overlapping Schwarz with
discretizations that employ ghost cells

e Learning of “optimal” transmission conditions to ensure
structure preservation

» Extension of Schwarz to enabling coupling of non-intrusive

QS N\
\ High-fidelity \\
\ --{- mesh-free )
model /
(Physics3)

ROM FOM ROM  FOM ROM FOM Time

ROMs (e.g., DMD, OpInf, Neural Networks) B —— —— T

* Development of automated criteria to determine
. . Q, FOM FOM FOM Time
appropriate use of less refined or reduced-order models = —— T i

without sacrificing accuracy, enabling real-time transitions

between different model fidelities — New project: AHeaD LDRD
* https://pressio.github.io



https://https/pressio.github.io
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All-ROM Coupling

95% Singular Value (SV) Energy Retention

15D

99% Singular Value (SV) Energy Retention

% 5.0
I
=251 8 | | S | N |
8 ! | ! !
= 0 20 40 60 80 100 0 20 40 60 80 100
T xr
i |
8
(@)
1O
I
S0 | | | | | | | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
y y
95% SV Energy 99% SV Energy
Subd i
HDEOMmains MSE (%) CPU time (s) MSE (%) CPU time (s) 0 100
) ) o |
57 1.1 85 146 0.18 295
44 1.2 56 120 0.18 216
24 1.4 43 60 0.16 89
| | o
32 1.9 66  0.25 100 S
Total 245 700
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Summary

The Schwarz alternating method has been developed for concurrent
multi-scale coupling of conventional and data-driven models.

25 Coupling is concurrent (two-way).
25 Ease of implementation into existing massively-parallel HPC codes.

25 “Plug-and-play” framework: simplifies task of meshing complex geometries!

23 Ability to couple regions with different non-conformal meshes, different element types
and different levels of refinement.

@Ability to use different solvers (including ROM/FOM) and time-integrators in different
~ regions.

@Scalable, fast, robust on real engineering problems

23 Coupling does not introduce nonphysical artifacts.

&

23 Theoretical convergence properties/guarantees.
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Neural Network Summer Intern
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Scenario 1: use Schwarz to train
subdomain PINNs (offline)

Goal: investigate the use of the Schwarz alternating method as a

—

means to couple Physics-Informed Neural Networks (PINNs) Scenario 2: use Schwarz to
couple pre-trained subdomain

Related work: Li et al., 2019, Li et al., 2020, Wang et al., 2022. — PINNs/NNs (online)
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1D steady advection-diffusion equation on Q = [0,1]: A

0 V2 V1 1
Uy — VU =1, u(0)=u(1)=0 : : : :
\ J
|
PINNs are notoriously difficult to train O,
for higher Peclet numbers! Overlapping DD: Q = Q, U Q, with boundary dQ = {0,1}

|—> Can Schwarz help?
Ly.; (8) = MSE(—VVZNNq,(x,6) + V,NNq,(x,0) — 1)

£,,1(6) = MSE(NNq, (99, 8)) + MSE (NN, (¥:,6) — NNg, (¥:,6)) ]

Schwarz PINN training algorithm:

Loop over subdomains (; until convergence of Schwarz method
Train PINN in Q; with loss £;(0) = aL,.;(8) + Ly ;(8) + vL,:(6)
Communicate Dirichlet data between neighboring subdomains
Update boundary data on y; from neighboring subdomains
If strong enforcement of Dirichlet BC (SDBC), set i (x,68) = NN, (x, 6)
If weak enforcement of Dirichlet BC (WDBC), set # = 0 and iiq,(x, 8) = v(x)NNgq,(x, 6) + zp(x)ﬁgj(yj,e)
where v(x) is chosen s.t. v(0) = v(y;) = v(1) = 0 and Y(x) is chosen s.t. v(y;) =1
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Bonus: PINN-PINN coupling

>

"

0.6 1

AO4_

0.2 1

0.0 A1

Schwarz iteration 1; Pe = 10

’’’’’
/”
-

SDBC on y; Pt
//
”
/,,,
’
//,
”
P d

\

,/’, \

/z’ \

//’ 1
-7 L — 1
0.0 0.2 0.4 0.6 0.8 1.0

How Dirichlet boundary conditions are handled
has a large impact on PINN convergence

Convergence not improved in general with
increasing overlap

Increasing # subdomains in general will increase
CPU time
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Pe =100

1 OO = - L T
wn O 21, nosnapshots, WDBC (unconverged)
% O ¥ 2, nosnapshots, SDBC
= A 20, snapshots, WDBC (unconverged)
8 A 4 2, snapshots, SDBC
o O 39, nosnapshots, WDBC (unconverged)
© 10'1 - - V¥ 3, nosnapshots, SDBC
o A 30, snapshots, WDBC
8 <] 3, snapshots SDBC (unconverged)
6 i J7 - 4 Q, no snapshots, WDBC (unconverged)
= o ' /4, nosnapshots, SDBC (unconverged)
@ A 4 Q, snapshots, WDBC
N 1072 F :
S 4 4 Q, snapshots SDBC
@ 4 v = AA A 4 O 51, nosnapshots, WDBC (unconverged)
% VvV 51, nosnapshots, SDBC (unconverged)
> <4 A 50, snapshots, WDBC
é 4 5, snapshots, SDBC
1073 : — =
10 « Using SDBCs and data loss helps with
CPU time (s) PINN/NN convergence and accuracy



a6 | Bonus: PINN-FOM coupling

Schwarz iteration 1

PINN subdomain

; Pe = 1000000

* PINN-FOM coupling gives rapid PINN convergence for arbitrarily high Peclet numbers

* PINN-FOM couplings works with both WDBC and SDBC configurations



., | Theoretical Foundation

Using the Schwarz alternating as a discretization method for
PDEs is natural idea with a sound theoretical foundation.

= S.L.Sobolev (1936): posed Schwarz method for linear elasticity in
variational form and proved method’s convergence by proposing a
convergent sequence of energy functionals.

= S.G. Mikhlin (1951): proved convergence of Schwarz method for general
linear elliptic PDEs.

= P.-L. Lions (1988): studied convergence of Schwarz for nonlinear monotone
elliptic problems using max principle.

$.G. Mikhlin
(1908 — 1990)
= A. Mota, |. Tezaur, C. Alleman (2017): proved convergence of the

alternating Schwarz method for finite deformation quasi-static nonlinear

PDEs (with energy functional @[¢]) with a geometric convergence rate.

¢[(p]=J A(F,Z)dV—J B-gdV
B B
V-P+B=0

A. Mota, |. Tezaur, C. Alleman
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Schwarz Alternating Method for Dynamic Multiscale Coupling: Theory

49

* Like for quasistatics, dynamic alternating Schwarz method converges provided each single-domain
problem is well-posed and overlap region is non-empty, under some conditions on At.

* Well-posedness for the dynamic problem requires that action functional S[¢] :=

I, |y L (@, @)dVdt be strictly convex or strictly concave, where L(¢, @) =T (@) + V(@) is the
Lagrangian.
> This is studied by looking at its second variation 6%S[¢},]

* We can show assuming a Newmark time-integration scheme that for the fully-discrete problem:

52S[@p]=x"

(BAt )ZM—K]x

> §2%S[¢}] can always be made positive by choosing a sufficiently small At

» Numerical experiments reveal that At requirements for stability/accuracy typically lead to
automatic satisfaction of this bound.



so I Energy-Conserving Sampling and Weighting (ECSW)

* Project-then-approximate paradigm (as opposed to approximate-then-project)

Tk (qkl t) - WT')"({I:’ t)
= Z WTLLr, (L +1,t)
ee€

« L, €{0,1}4*N where d, is the number of degrees of freedom associated with each mesh element (this is
in the context of meshes used in first-order hyperbolic problems where there are N, mesh elements)

« L.+ € {0,1}%*N selects degrees of freedom necessary for flux reconstruction

« Equality can be relaxed

Augmented reduced mesh: © represents a
selected node attached to a selected
element; and @ represents an added node to
enable the full representation of the
computational stencil at the selected
node/element
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ECSW: Generating the Reduced Mesh and Weights

Using a subset of the same snapshots u;,i € 1, ..., n; used to generate the state basis VV, we can train the
reduced mesh

Snapshots are first projected onto their associated basis and then reconstructed
cee = WTLLr, (Le+ (uref +V VT (us— uref)) , t) € R"
d. =n(u,t) € R", s=1,..,ny

We can then form the system
€11 - Cin, d,
Cnhl CnhNe dnh

Where €& = d, & € RNe, & = 1 must be the solution
Further relax the equality to yield non-negative least-squares problem:
¢ = arg min,crn||Cx — d||, subjecttox > 0

Solve the above optimization problem using a non-negative least squares solver with an early
termination condition to promote sparsity of the vector ¢



