Performance and Stewardship of E3SM ice-sheet model MALI

¹Sandia National Laboratories Jerry Watkins¹, Oscar Antepara², Luca Bertagna¹, Max Carlson¹, Trevor Hillebrand³, Matt Hoffman³, Jonathan Hu¹, ²Lawrence Berkeley National Laboratory ³Los Alamos National Laboratory Kim Liegeois¹, Mauro Perego¹, Stephen Price³, Mark S. Shephard⁴, Cameron W. Smith⁴, Irina Tezaur¹, Sam Williams² ⁴Rensselaer Polytechnic Institute

Introduction

Motivation:

Melting polar ice sheets (Greenland, Antarctica) are a major contributor to rising global mean sea level. Ice-sheet models are increasing in fidelity and resolution in order to capture accurate projections of future global mean sea level.

Problem:

• The growing complexity and resolution of ice-sheet models, combined with the need

Performance

Algorithmic improvements: Damped block Jacobi smoother

FASTMATH

Challenge

Improve linear solver convergence on GPU architectures

Approach

Damped block Jacobi line

Average Linear Iterations vs. Nodes

for large ensembles to capture uncertainties, demand fast and robust models that can efficiently run on upcoming architectures.

	Chebyshev	92	105	105		183
smoother for anisotropic problem	Block Jacobi	21	19	34	79	114
	Improvement	4.4	5.5	3.1	1.5	1.6
Weak sca • Up to <u>5.5x less linear iterations</u> , 1	aling solving for the	e ice veloc over Ch	ity in Antarct ebyshev :	ic ice shee smoothe	et at differer E r	nt resolutions
Performance optimization: First-	-order Stoke	<u>es resi</u>	dual ker	nel	7RAP	IDS
Challenge		E	Baseline Jacobia Baseline Residu	an • C Ial = C	Optimized Jac Optimized Res	obian e sidual e
• Optimize single code (Kokkos/Sacado) for multiple architectures/data types		00e+01	Perlmutter NVIDIA A1	-NERSC 00	9.	7 TFLOP/s
 Approach Roofline analysis to identify potential optimizations in source code 	al [5/40] 1.0	00e+00		1.55 TF	315	
Results	forma	-		} <u>3x</u>	Speedu	<u>q</u>
 Up to <u>3x speedup</u> in kernel over or 	riginal 🛱 1.0	00e-01			1 1	
code on Perlmutter/Frontier		0.1	1 Arithme	1 etic Intensi	ity [FLOP/b	10 oyte]

Impact

Antarctica ice-sheet

Approach:

- Omega_h connectivity manager interface in Albany (mesh to dofs)
- Compass workflow to pass grounding line to Simmetrix mesh

Results:

- Omega_h-Albany (mesh-solver) Poisson regression test
- Compass Greenland ice-sheet grounding line (top). Simmetrix mesh (bottom).

Automated Testing & Tuning

Challenge:

Sustainable computational throughput on DOE machines

Approach:

CDash software testing; GPTune solver tuning

Results:

GPU solver on Perlmutter/Frontier

GPU Velocity Solver Weak Scalability Wall-clock time (s) vs. Nodes 1.00E+02 1.00E+01 1.00E+00 256 Resolution (km) 2 16 21.08 29.85 9.15 Perlmutter Frontier 22.03 11.58 25.15 13.97 15.85

production runs on **Perlmutter (CPU/GPU)**

- First production runs on Perlmutter-GPU
- 4km (solid) & 2km (dashed)

ensembles with different global circulation models: CCSM4 (blue), HadGEM2 (orange)

E3SM-MALI on Perlmutter

• First test runs on Perlmutter with land-ice component on GPU

Future Work

Watkins et al. (2023) Performance portable ice-sheet modeling with MALI. The International Journal of High Performance Computing Applications, 37(5), 600-625.

- Kernel optimization to improve computational throughput
- Mesh adaptivity with first-order Stokes and thickness evolution
- Improve compass/spack integration/testing for exascale systems

Sandia National Laboratories

jwatkin@sandia.gov

For additional information, contact:

Jerry Watkins FAnSSIE performance lead

Sandia National Laboratories is a multimissior laboratory managed and operated by National

Administration under contract DE-NA0003525.

Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security

