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Motivation for Coupling in Solid Mechanics
4

Concurrent multiscale coupling for predicting failure

• Large scale structural failure frequently originates from small 

scale phenomena such as defects, microcracks, inhomogeneities and 

more, which grow quickly in unstable manner

• Failure occurs due to tightly coupled interaction between small 

scale (stress concentrations, material instabilities, cracks, etc.) and 

large scale (vibration, impact, high loads and other perturbations)

• Concurrent multiscale methods are essential for understanding 

and prediction of behavior of engineering systems when a small 

scale failure determines the performance of the entire system

Simplification of mesh generation

• Creating a high-quality mesh for a single component can take 

weeks, making it “the single biggest bottleneck in analyses” [Sandia 

Lab News, 2020]!

Roof failure of Boeing 737 aircraft due to 

fatigue cracks. From imechanica.org

Schematic of difficult-to-mesh ratcheting mechanism with 

multiple threaded fasteners.  From Parish et al., 2024.

Goal: develop a concurrent multiscale coupling method that is 

minimally-intrusive to implement into large HPC codes and can 

simplify the task of meshing complex geometries. 



Requirements for Multiscale Coupling Method

• Coupling is concurrent (two-way)

• Ease of implementation into existing massively-parallel HPC codes

• “Plug-and-play” framework: simplifies task of meshing complex geometries 

 Ability to couple regions with different non-conformal meshes, different element types and 

different levels of refinement

 Ability to use different solvers/time-integrators in different regions

• Scalable, fast, robust (we target real

engineering problems, e.g., analyses 

involving failure of bolted components!)

• Coupling does not introduce nonphysical 

artifacts

• Theoretical convergence properties/ 

guarantees
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6 Schwarz Alternating Method for Domain Decomposition

• Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

H. Schwarz (1843–1921)

Initialize:

• Solve PDE by any method on Ω1 w/ initial guess for transmission BCs on Γ1.

Iterate until convergence:

• Solve PDE by any method on Ω2 w/ transmission BCs on Γ2 based on values 

just obtained for Ω1.

• Solve PDE by any method on Ω1 w/ transmission BCs on Γ1 based on values 
just obtained for Ω2.

Crux of Method: if the solution is known in regularly shaped domains, use 

those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

2Lions, 1990. 3Zanolli et al., 1987. 

overlapping

non-overlapping

• Schwarz alternating method most commonly used as a preconditioner for Krylov iterative methods 

to solve linear algebraic equations.

Idea behind this work: using the Schwarz alternating method as a discretization 

method for solving multi-scale or multi-physics partial differential equations (PDEs).



How We Use the Schwarz Alternating Method7
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Quasistatic Solid Mechanics Formulation
9

• Energy functional defining weak form of the governing PDEs 

Φ 𝝋 ≔ න
Ω

𝐴 𝑭, 𝒁 𝑑𝑉 − න
Ω

𝜌𝑩 ∙ 𝝋𝑑𝑉

 𝐴(𝑭, 𝒁): Helmholtz free-energy density

 𝑭:= 𝛻𝝋: deformation gradient

 𝒁: collection of internal variables (for plastic materials) 

 𝜌: density, 𝑩: body force, 𝑷 = 𝜕𝐴/𝜕𝑭: Piola-Kirchhoff stress

• Euler-Lagrange equations, obtained by minimizing Φ 𝝋 : 

• Quasistatics solves sequence of problems in which loading (body force) 𝑩 is incremented 

quasistatically w.r.t. pseudo time 𝑡𝑖:

For 𝑖 = 1, … , 𝑛
Solve Div 𝑷 + 𝜌𝑩(𝑡𝑖) = 𝟎 with appropriate boundary conditions (BCs)

Increment pseudo time 𝑡𝑖 to obtain 𝑡𝑖+1

ቊ
Div 𝑷 + 𝜌𝑩 = 𝟎 , in Ω
𝝋 = 𝝌, on 𝜕Ω
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Overlapping Domain Decomposition

Non-overlapping Domain Decomposition
• Relevant for multi-material and 

multi-physics coupling 

• Alternating Dirichlet-Neumann 

transmission BCs [Zanolli et al., 

1987]

• Robin-Robin transmission BCs also 

lead to convergence [Lions,1990] 

• 𝜃 ∈ 0,1 : relaxation parameter 

(can help convergence)

• Dirichlet-Dirichlet 

transmission BCs [Schwarz, 

1870; Lions, 1988]

Spatial Coupling via (Multiplicative) Alternating Schwarz

Div 𝑷1
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω1

𝝋1
(𝑛+1)

= 𝝌, on 𝜕Ω1\Γ1

𝝋1
(𝑛+1)

= 𝝋2
(𝑛)

on Γ2

Div 𝑷2
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω2

𝝋2
(𝑛+1)

= 𝝌, on 𝜕Ω2\Γ2

𝝋2
(𝑛+1)

= 𝝋1
(𝑛+1)

on Γ2

Div 𝑷1
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω1

𝝋1
(𝑛+1)

= 𝝌, on 𝜕Ω1\Γ

𝝋1
(𝑛+1)

= 𝝀𝑛+1 on Γ

Div 𝑷2
(𝑛+1)

+ 𝜌𝑩(𝑡𝑖) = 𝟎 , in Ω2

𝝋2
(𝑛+1)

= 𝝌, on 𝜕Ω2\Γ

𝑷2
(𝑛+1)

𝒏 = 𝑷2
(𝑛+1)

𝒏, on Γ

𝝀𝑛+1 = 𝜃𝝋2
(𝑛)

+ 1 − 𝜃 𝝀𝑛 , on Γ, for 𝑛 ≥ 1

Model PDE:

ቊ
Div 𝑷 + 𝜌𝑩 = 𝟎 , in Ω
𝝋 = 𝝌, on 𝜕Ω
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(𝑛)

+ 1 − 𝜃 𝝀𝑛 , on Γ, for 𝑛 ≥ 1

Part 1 of talk

Part 2 of talk

Model PDE:

ቊ
Div 𝑷 + 𝜌𝑩 = 𝟎 , in Ω
𝝋 = 𝝌, on 𝜕Ω



Multiplicative Overlapping Schwarz Additive Overlapping Schwarz

12 Additional Parallelism via Additive Schwarz

• Multiplicative Schwarz: solves subdomain problems sequentially (in serial)

• Additive Schwarz: advance subdomains in parallel, communicate boundary condition data later

 Typically requires a few more Schwarz iterations, but does not degrade accuracy

 Parallelism helps balance additional cost due to Schwarz iterations

 Applicable to both overlapping and non-overlapping Schwarz

Div 𝑷1
(𝑛+1)
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Div 𝑷 + 𝜌𝑩 = 𝟎 , in Ω
𝝋 = 𝝌, on 𝜕Ω

Part 1 of talk Part 2 of talk



Overlapping Schwarz Coupling in Quasistatics

Advantages:

• Conceptually very simple.

• Allows the coupling of regions with different non-conforming meshes, different element types, and 

different levels of refinement.

• Information is exchanged among two or more regions, making coupling concurrent.

• Different solvers can be used for the different regions.

• Different material models can be coupled if they are compatible in the overlap region.

• Simplifies the task of meshing complex geometries for the different scales.

outer 

quasistatic

loop

14



A. Mota, I. Tezaur, C. Alleman Schwarz Alternating Method in Solid Mechanics

⌦1 ⌦2 Γ1Γ2 !

Figure 1: Two subdomains⌦1 and⌦2 and the corresponding boundaries Γ1 and Γ2 used by the Schwarz alternating method.

that is i = 1 and j = 2 if n is odd, and i = 2 and j = 1 if n is even. Introduce the following definitions for

each subdomain i :

• Closure: ⌦i := ⌦i [ @⌦i

• Dirichlet boundary: @' ⌦i := @' ⌦\ ⌦i .

• Neumann boundary: @T ⌦i := @T ⌦\ ⌦i .

• Schwarz boundary: Γ i := @⌦i \ ⌦j .

Note that with thesedefinitions we guarantee that @' ⌦i \ @T ⌦i = ; , @' ⌦i \ Γ i = ; and @T ⌦i \ Γ i = ; .

Now define the spaces

Si := ' 2 W 1
2 (⌦i ) : ' = χ on @' ⌦i , ' = P⌦j ! Γ i

[' (⌦j )] on Γ i

 
, (7)

and

Vi := ⇠2 W 1
2 (⌦i ) : ⇠= 0 on @' ⌦i [ Γ i

 
, (8)

where thesymbol P⌦j ! Γ i
[·] denotes the projection from thesubdomain⌦j onto theSchwarz boundary Γ i .

This projection operator plays a central role in the Schwarz alternating method. Its form and implementation

are discussed in subsequent sections. For the moment it is sufficient to assume that the operator is able to

project afield ' from one subdomain to the Schwarz boundary of the other subdomain.

The Schwarz alternating method solves a sequence of problems on⌦1 and⌦2. The solution ' (n ) for the

n-th problem is given by

' (n ) =

8
<

:

idX , for n = 0;

arg min
' 2 Si

Φi [' ], for n > 0;
(9)

where idX is the identity map that maps X onto itself (i.e. zero displacement), and

Φi [' ] :=

Z

⌦i

A(F , Z ) dV −

Z

⌦i

RB · ' dV −

Z

@T ⌦i

T · ' dS. (10)

A better guess, if available, may be used to initialize ' (0) on ⌦2 rather than the identity map idX . The

minimization of the functional (10) leads to a variational formulation of the form (4)–(5) for each subdomain

as

DΦi ['
(n ) ](⇠( i ) ) =

Z

⌦i

P : Grad⇠( i ) dV −

Z

⌦i

RB ·⇠( i ) dV −

Z

@T ⌦i

T ·⇠( i ) dS = 0, (11)

6

Convergence Proof*

*A. Mota, I. Tezaur, C. Alleman. "The Schwarz Alternating Method in Solid Mechanics", CMAME 319 (2017), 19-51.
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Implementation in Albany-LCM and Sierra/SM HPC Codes16

The overlapping Schwarz alternating method has been 

implemented in two Sandia HPC codes: Albany-LCM and Sierra/SM

Albany-LCM1

• Open-source parallel, C++, multi-physics, finite element code 

that relies heavily on Trilinos2 libraries

• Parallel implementation of Schwarz alternating method uses the 

Data Transfer Kit (DTK)3

Sierra/Solid Mechanics (Sierra/SM)

• Sandia proprietary production Lagrangian 3D code for finite 

element analysis of solids & structures

• Schwarz alternating method was “implemented” in Sierra/SM 

using Arpeggio iterative coupling framework

We did not have to write any code in 

Sierra/SM to implement Schwarz!

1https://github.com/sandialabs/LCM.git.  2http://github.com/trilinos/Trilinos.git.  3https://github.com/ORNL-CEES/DataTransferKit. 

Data Transfer Kit (DTK)

https://github.com/sandialabs/LCM.git
http://github.com/trilinos/Trilinos.git
https://github.com/ORNL-CEES/DataTransferKit
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Schwarz Iteration

Cuboid Problem

• Coupling of two cuboids with square base (above).

• Neohookean-type material model.

18



∆𝑦(𝑚+1) ≤ 𝜇∆𝑦(𝑚)

Cuboid Problem: Convergence and Accuracy19

• Top right: convergence of the cuboid problem for 

different mesh sizes and fixed overlap volume fraction.  

The Schwarz alternating method converges linearly.

• Bottom right: convergence factor 𝜇 as a function of 

overlap volume and different mesh.  There is faster 

linear convergence with increasing overlap volume 

fraction.

• Below: relative errors in displacement and stress w.r.t.

single-domain reference solution.  Errors are on the order 

of machine precision. 



Notched Cylinder

• Notched cylinder that is stretched along its axial direction.

• Domain decomposed into two subdomains.

• Neohookean-type material model.

20



• The Schwarz alternating method is capable of coupling different mesh topologies.

• The notched region, where stress concentrations are expected, is finely meshed with 

tetrahedral elements.

• The top and bottom regions, presumably of less interest, are meshed with coarser hexahedral

elements. 

Notched Cylinder:  TET - HEX Coupling
21
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• Relative errors in displacement 

w.r.t. single-domain reference 

solution are dominated by 

geometric (rather than coupling) 

error. 

Notched Cylinder:  TET - HEX Coupling



Laser Weld (Albany/LCM)

Laser weld specimen

• Problem of practical scale.

• Isotropic elasticity and J2 plasticity with 

linear isotropic hardening.

• Identical parameters for weld and base 

materials for proof of concept, to become 

independent models.

10

20

30

0.000e+00

4.000e+01
Cauchy_Stress_05

Coupled Schwarz discretization

(50% reduction in model size)

Single domain discretization

23



Laser Weld (Albany/LCM): Strong Scalability of Parallel Schwarz 
with DTK

• Near-ideal linear speedup (64-1024 cores).

Data Transfer Kit (DTK)

24



Laser Weld (Sierra/SM): Uniaxial Tension-Test Models  
25

Single domain: 

123,425 elements

Overlapping Schwarz: 

29,254 coarse, 78,549 fine elements

S
tr

e
ss

 (
P
a
)

Load step

− single domain

− Schwarz (16 iters)

• The domains for Schwarz coupling are meshed independently

• This provides the ability to try different meshing schemes for each subdomain

• No need to re-mesh entire domain

• Schwarz gives accurate prediction of stress states if tight enough Schwarz tolerance is used

 Tight Schwarz tolerance needed due to large disparity between element sizes

• For now, Schwarz is slower on this problem, but we are optimizing this



Tensile Bar

The alternating Schwarz method can be used as part of a homogenization

(upscaling) process to bridge gap b/w microscopic and macroscopic regions

• Microstructure embedded in ASTM 

tensile geometry (right).

• Fix microstructure, investigate          

ensemble of uniaxial loads. 

• Fit flow curves with a macroscale J2

plasticity model (below).

macro-
scale

micro-
structure

macro-
scale

Work by C. Alleman, J. Foulk,
D. Littlewood, G. Bergel

Goal: study strain localization in microstructure.

26
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Solid Dynamics Formulation28

• Kinetic energy: 𝑇 ሶ𝝋 ≔
1

2
න
Ω

𝜌 ሶ𝝋 ∙ ሶ𝝋 𝑑𝑉

• Potential energy: 𝑉 𝝋 ≔ න
Ω

𝐴 𝑭, 𝒁 𝑑𝑉 − න
Ω

𝜌𝑩 ∙ 𝝋 𝑑𝑉

• Lagrangian: 𝐿 𝝋, ሶ𝝋 ≔ 𝑇 ሶ𝝋 − 𝑉(𝝋)

• Action functional: 𝑆 𝝋 ≔ න
𝐼

𝐿 𝝋, ሶ𝝋 𝑑𝑡

• Euler-Lagrange equations: Div 𝑷 + 𝜌𝑩 = 𝜌 ሷ𝝋, in Ω × 𝐼

𝝋 𝑿, 𝑡0 = 𝒙0, in Ω

ሶ𝝋 𝑿, 𝑡0 = 𝒗0, in Ω

𝝋 𝑿, 𝑡 = 𝝌, on 𝜕Ω × 𝐼

• Semi-discrete problem following FEM discretization in space: 

𝑴 ሷ𝒖 + 𝒇int 𝒖, ሶ𝒖 = 𝒇ext



Step 0: Initialize 𝑖 = 0 (controller time index).

𝑇0 𝑇1

29 Time-Advancement Within the Schwarz Framework

Controller time stepper

Time integrator for W1

Time integrator for W2

Model PDE: ቊ
𝑴 ሷ𝒖 + 𝒇int 𝒖, ሶ𝒖 = 𝒇ext

𝒖 𝒙, 0 = 𝒖0



Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

𝑇0 𝑇1

30
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

𝑇0 𝑇1
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.

 If unconverged, return to Step 1. 

𝑇0 𝑇1
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.

 If unconverged, return to Step 1. 

 If converged, set 𝑖 = 𝑖 + 1 and return to Step 1.

𝑇0

Integrate using 𝛥𝑡1

𝑇2𝑇1

Interpolate from 
Ω2 to Γ1

Can use different integrators with 

different time steps within each domain!
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Step 0: Initialize 𝑖 = 0 (controller time index).

Step 1: Advance Ω1 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω1 with time-step 𝛥𝑡1, using 

solution in Ω2 interpolated to Γ1 at times 𝑇𝑖 + 𝑛𝛥𝑡1.

Step 2: Advance Ω2 solution from time 𝑇𝑖 to time 𝑇𝑖+1 using time-stepper in Ω2 with time-step 𝛥𝑡2, using 

solution in Ω1 interpolated to Γ2 at times 𝑇𝑖 + 𝑛𝛥𝑡2.

Step 3: Check for convergence at time 𝑇𝑖+1.

 If unconverged, return to Step 1. 

 If converged, set 𝑖 = 𝑖 + 1 and return to Step 1.

𝑇0

Integrate using 𝛥𝑡1

𝑇2𝑇1

Interpolate from 
Ω2 to Γ1
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Schwarz Alternating Method for Dynamic Multiscale Coupling:  Theory

• Like for quasistatics, dynamic alternating Schwarz method converges provided each single-

domain problem is well-posed and overlap region is non-empty, under some conditions on Δ𝑡.  

• Well-posedness for the dynamic problem requires that action functional 𝑆 𝝋 ≔

𝐼׬ Ω׬ 𝐿 𝝋, ሶ𝝋 𝑑𝑉𝑑𝑡 be strictly convex or strictly concave, where 𝐿 𝝋, ሶ𝝋 ≔ 𝑇 ሶ𝝋 + 𝑉 𝝋 is the 

Lagrangian.

 This is studied by looking at its second variation 𝛿2𝑆[𝝋ℎ]

• We can show assuming a Newmark time-integration scheme that for the fully-discrete problem:

𝛿2𝑆[𝝋ℎ]=𝒙
𝑇

𝛾2

(𝛽Δ𝑡)2
𝑴−𝑲 𝒙

 𝛿2𝑆[𝝋ℎ] can always be made positive by choosing a sufficiently small Δ𝑡

 Numerical experiments reveal that Δ𝑡 requirements for stability/accuracy 

typically lead to automatic satisfaction of this bound. 

*A. Mota, I. Tezaur, G. Phlipot. "The Schwarz alternating method for dynamic solid mechanics", IJNME, 2022.
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Elastic Wave Propagation

• Linear elastic clamped beam with Gaussian initial condition for the 𝑧-displacement.

• Simple problem with analytical exact solution but very stringent test for 

discretization methods.

• Test Schwarz with 2 subdomains: Ω0 = 0,0.001 × 0,0.001 × 0,0.75 , Ω1 =
0,0.001 × 0,0.001 × 0.25,1 . 

Left: Initial condition 
(blue) and final solution 

(red).  Wave profile is 
negative of initial profile 

at time  T = 1.0e-3.

Time-discretizations:
Newmark (implicit, explicit).

Meshes: HEX, TET
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z-displacement

Table 1: Averaged (over times + domains) relative errors in z–displacement (blue) and z-

velocity (green) for several different Schwarz couplings, 50% overlap volume fraction

LM = Lumped Mass, CM = Consistent Mass

z-velocity

Implicit-Implicit Explicit(CM)-Implicit Explicit(LM)-Implicit

Conformal HEX - HEX 2.79e-3 7.32e-3 3.53e-3 8.70e-3 4.72e-3 1.19e-2

Nonconformal HEX - HEX 2.90e-3 7.10e-3 2.82e-3 7.29e-3 2.84e-3 7.33e-3

TET - HEX 2.79e-3 7.58e-3 3.52e-3 8.92e-3 4.72e-3 1.19e-2

Dynamic Schwarz coupling introduces 

no dynamic artifacts that are 

pervasive in other coupling methods!

Elastic Wave: Different Integrators, Same ∆𝑡s
39



Elastic Wave: Different Integrators, Different ∆𝑡s

Figures above: Plots of displacement, velocity and acceleration for the 

elastic wave propagation problem using different time integrators (implicit 

and explicit) and different time steps (1e-2s and 2e-7s) for each 

subdomain, superimposed over the analytic single domain solution. 

The analytic solution is indistinguishable from Schwarz solutions 

(hidden behind the solutions for Ω0 (red) and Ω1 (green))!

Displacement Velocity Acceleration
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• Uniaxial aluminum cylindrical tensile 

specimen with inelastic J2 material model.

• Domain decomposition into two 

subdomains (right): Ω0 = ends, Ω1 = gauge.

• Nonconformal HEX + composite TET10 

coupling via Schwarz.

• Implicit Newmark time-integration with 

adaptive time-stepping algorithm 

employed in both subdomains.

• Slight imperfection introduced at center of 

gauge to force necking upon pulling in 

vertical direction.

Ω1

Ω0

+

41
Tension Specimen
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Tension Specimen: Expected Result



Tension Specimen: Displacement & EQPS*

Average of ~3 Schwarz 

iterations/time step required 

for convergence to Schwarz 

tolerance of 1e-6.

y-displacement EQPS*

*EQPS = Equivalent Plastic Strain
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Bolted Joint Problem

Ω2

Ω1

• Ω1 = bolts (Composite TET10), Ω2 = parts (HEX).

• Inelastic J2 material model in both subdomains.

• Ω1: steel

• Ω2: steel component, aluminum (bottom) plate

• Schwarz solution compared to single-domain solution on 

composite TET10 mesh.

• BC: x-disp = 0.02 at T = 1.0e-3 on 

top of parts.

• Run until T = 5.0e-4 w/ dt = 1e-5 + 

implicit Newmark with analytic 

mass matrix for composite tet 10s.

Problem of practical scale.
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Single Ω Schwarz

Bolted Joint Problem: Displacement
45



Single Ω Schwarz

46
Bolted Joint Problem: Equivalent Plastic Strain (EQPS)



Bolted Joint Problem: Convergence Rate

Figure above: Convergence behavior of the dynamic 

Schwarz algorithm for the bolted joint problem

Linear convergence rate is 

observed for dynamic 

Schwarz algorithm, as for the 

quasistatic Schwarz 

algorithm.
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Bolted Joint Problem: Performance

CPU times (64 

procs*)

Avg # Schwarz 

iters

Max # Schwarz 

iters

Single Domain 3h 34m − −

Schwarz 2h 42m 3.22 4

Single Domain (finer) 17h 00m − −

Schwarz (finer mesh of bolts) 29h 29m 3.28 4

48
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* On SNL ascicgpu15, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6. 49

• Despite its iterative nature, Schwarz can actually be faster than single domain 

run for discretizations having comparable # of elements in the bolts.

Bolted Joint Problem: Performance

* On SNL ascicgpu15, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6.

CPU times (64 

procs*)

Avg # Schwarz 

iters

Max # Schwarz 

iters

Single Domain 3h 34m − −

Schwarz 2h 42m 3.22 4

Single Domain (finer) 17h 00m − −

Schwarz (finer mesh of bolts) 29h 29m 3.28 4
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* On SNL ascicgpu15, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6.

• Despite its iterative nature, Schwarz can actually be faster than single domain 

run for discretizations having comparable # of elements in the bolts.

 Even if the method is more computationally expensive for some 

resolutions, it may be preferred for its ability to rapidly change and 

evaluate a variety of engineering designs (our typical use case).

Bolted Joint Problem: Performance

* On SNL ascicgpu15, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6.

CPU times (64 

procs*)

Avg # Schwarz 

iters

Max # Schwarz 

iters

Single Domain 3h 34m − −

Schwarz 2h 42m 3.22 4

Single Domain (finer) 17h 00m − −

Schwarz (finer mesh of bolts) 29h 29m 3.28 4



• Despite its iterative nature, Schwarz can actually be faster than single domain 

run for discretizations having comparable # of elements in the bolts.

 Even if the method is more computationally expensive for some 

resolutions, it may be preferred for its ability to rapidly change and 

evaluate a variety of engineering designs (our typical use case).

• Dynamic Schwarz converges in between 2-4 Schwarz iterations 

per time-step despite the overlap region being very small for 

this problem.

* On SNL ascicgpu15, 16, 17 machines (Intel Skylake CPU processor), Schwarz tol = 1e-6.
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overlap region

Bolted Joint Problem: Performance

CPU times (64 

procs*)

Avg # Schwarz 

iters

Max # Schwarz 

iters

Single Domain 3h 34m − −

Schwarz 2h 42m 3.22 4

Single Domain (finer) 17h 00m − −

Schwarz (finer mesh of bolts) 29h 29m 3.28 4
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53 Motivation for ROM-ROM/ROM-FOM Couplings

The past decades have seen tremendous investment in simulation 

frameworks for coupled multi-scale and multi-physics problems.  

• Frameworks rely on established mathematical theories to couple physics components.

• Most existing coupling frameworks are based on traditional discretization methods.

• Monolithic (Lagrange multipliers)

• Partitioned (loose) coupling

• Iterative (Schwarz, optimization)

M1 M2

M3 M4
N3

N4

N1
N2

N5

N3

N4

N5

N2N1

• Mesh-based (FE, FV, FD)

• Meshless (SPH,  MLS)

• Implicit, explicit

• Eulerian, Lagrangian…

Complex System Model Traditional Methods Coupled Numerical Model

Ocean

(MPAS-

O)

Atmos.

(EAM)

Sea Ice

(MPAS-

SI)

Land 

Ice

(MALI)

Land

(ELM)

• PDEs, ODEs

• Nonlocal integral 

• Classical DFT 

• Atomistic, …



54 Motivation for ROM-ROM/ROM-FOM Couplings

The past decades have seen tremendous investment in simulation 

frameworks for coupled multi-scale and multi-physics problems.  

• Frameworks rely on established mathematical theories to couple physics components.

• Most existing coupling frameworks are based on traditional discretization methods.

• Monolithic (Lagrange multipliers)

• Partitioned (loose) coupling

• Iterative (Schwarz, optimization)

M1 M2

M3 M4
N3

N4

N1
N2

N5

N3

N4

N5

N2N1

• PDEs, ODEs

• Nonlocal integral 

• Classical DFT 

• Atomistic, …

• Mesh-based (FE, FV, FD)

• Meshless (SPH,  MLS)

• Implicit, explicit

• Eulerian, Lagrangian, …

Complex System Model Traditional Methods Coupled Numerical Model

Ocean

(MPAS-

O)

Atmos.

(EAM)

Sea Ice

(MPAS-

SI)

Land 

Ice

(MALI)

Land

(ELM)

DMD=N3

ROM=N4

N1
PINN=N2

UDE=N5

Traditional + Data-Driven Methods

• PINNs

• Neural ODEs

• Projection-based ROMs, …

Unfortunately, existing algorithmic and software infrastructures are ill-equipped to 

handle plug-and-play integration of non-traditional, data-driven models!

• There is currently a big push to integrate data-driven methods into modeling & simulation toolchains.



• Alternating Schwarz-based coupling

• Optimization-based coupling

• Coupling via generalized mortar methods

55

Principal research objective: 

• Discover mathematical principles guiding the assembly of standard and data-driven numerical models 

in stable, accurate and physically consistent ways.

Principal research challenges: we lack mathematical and algorithmic understanding of how to

• “Mix-and-match” standard and data-driven models from three-classes

Class A: projection-based reduced order models (ROMs)

Class B: machine-learned models, i.e., Physics-Informed Neural Networks (PINNs)

Class C: flow map approximation models, i.e., dynamic model decomposition (DMD) models

• Ensure well-posedness & physical consistency of  resulting 

heterogeneous models.

• Solve such heterogeneous models efficiently.

Three coupling methods:

Flexible Heterogeneous Numerical Methods (fHNM) Project

This talk.

This talk.



56 Projection-Based Model Order Reduction via the POD/LSPG* Method56

Full Order Model (FOM): 
𝜕𝒒

𝜕𝑡
= 𝒇(𝒒, 𝑡; 𝝁)

Proper Orthogonal Decomposition (POD):

Solve ODE at different 

design points

1. Data Acquisition

2. Learning of Reduced Basis

3. Projection-Based ReductionNumber of 

time steps

N
u
m

b
e
r 

o
f 

S
ta

te
 

V
a
ri

a
b
le

s

Save solution data

Reduce the 

number of 

unknowns

Discretize 

FOM in time

ሶ𝒒 = 𝒇(𝒒, 𝑡; 𝝁)

Apply hyper-

reduction and 

minimize residual

minimizeෝ𝒗 || 𝑨 𝒓𝒏 𝜱ෝ𝒗;𝝁 ||𝟐

Hyper-reduction/sample mesh

𝒒 𝑡 ≈ ෥𝒒 𝑡 = 𝜱ෝ𝒒(𝑡)

ROM = projection-based Reduced Order Model                                HROM = Hyper-reduced ROM    

*Least-Squares Petrov-Galerkin

𝒓𝑛 𝒒𝑛; 𝝁 = 𝟎, 𝑛 = 1,… , 𝑇
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58
Schwarz Extensions to FOM-ROM and ROM-ROM Couplings

58

Choice of domain decomposition

• Overlapping vs. non-overlapping domain decomposition?

 Non-overlapping more flexible but typically requires more Schwarz iterations

• FOM vs. ROM subdomain assignment?

 Do not assign ROM to subdomains where they have no hope of approximating solution

Snapshot collection and reduced basis construction

• Are subdomains simulated independently in each subdomains or together?

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

• Strong vs. weak BC enforcement?

 Strong BC enforcement difficult for some models (e.g., cell-centered finite volume, PINNs)

• Optimizing parameters in Schwarz BCs for non-overlapping Schwarz?

Choice of hyper-reduction

• What hyper-reduction method to use?

 Application may require particular method (e.g., ECSW for solid mechanics problems)

• How to sample Schwarz boundaries in applying hyper-reduction?

 Need to have enough sample mesh points at Schwarz boundaries to apply Schwarz
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Figure above: solution of 𝑢
component at various times

FOM discretization: 

• Spatial discretization given by a Godunov-type scheme with 𝑁 =
250 elements in each dimension 

• Implicit trapezoidal method with fixed ∆𝑡 = 0.05

Ω1

𝑥0 100

𝑦
1

0
0

0

2D Inviscid Burgers Equation

Problem setup: 

• Ω = (0,100)2, 𝑡 ∈ 0, 25

• Two parameters 𝝁 = (𝜇1, 𝜇2).  Training: uniform sampling 

of = 4.25, 5.50 × [0.015, 0.03] by a 3 × 3 grid.  Testing: 

query unsampled point 𝝁 = [4.75, 0.02]

Popular analog for fluid problems where shocks are possible, and 

particularly difficult for conventional projection-based ROMs

𝜕𝑢

𝜕𝑡
+
1

2

𝜕(𝑢2)

𝜕𝑥
+
𝜕(𝑢𝑣)

𝜕𝑦
= 0.02 exp 𝜇2𝑥

𝜕𝑣

𝜕𝑡
+
1

2

𝜕(𝑣𝑢)

𝜕𝑥
+
𝜕(𝑣2)

𝜕𝑦
= 0

𝑢 0, 𝑦, 𝑡; 𝝁 = 𝜇1
𝑢 𝑥, 𝑦, 0 = 𝑣 𝑥, 𝑦, 0 = 1
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Schwarz Coupling Details

61

Choice of domain decomposition

• Overlapping DD of Ω into 4 subdomains coupled via multiplicative Schwarz

• Solution in Ω1 is most difficult to capture by ROM

Snapshot collection and reduced basis construction

• Single-domain FOM on Ω used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

• BCs imposed strongly using Method 1 of [Gunzburger et al., 2007] at indices 𝑖Dir

𝒒(𝑡) ≈ ഥ𝒒 +𝜱ෝ𝒒(𝑡)

 POD modes made to satisfy homogeneous DBCs:  𝜱 𝒊Dir, ∶ = 𝟎

 BCs imposed by modifying ഥ𝒒 :  ഥ𝒒 𝒊Dir ← 𝝌𝒒

Choice of hyper-reduction

• Energy Conserving Sampling & Weighting (ECSW) method for hyper-reduction

• All points on Schwarz boundaries are included in the sample mesh

Ω1

𝑥0 100

𝑦
1

0
0

0

Ω2

Ω3Ω4
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Ω1

𝑥0 100

𝑦
1

0
0

0

Ω2

Ω3Ω4

• FOM in Ω1 as this is “hardest” subdomain for ROM

• HROMs in Ω2, Ω3, Ω4 capture 99% snapshot energy

• Method converges in 3 Schwarz iterations per controller time-step

• Errors O(0.1%) with 0 error in Ω1

• 2.26× speedup achieved over all-FOM coupling

Ω1
Ω2

Ω3
Ω4

1 SD

FOM-HROM-HROM-HROM Coupling

Subdomains

99% SV Energy

𝑀 MSE (%) CPU time (s)

Ω1 − 0.0 95

Ω2 120 0.26 26

Ω3 60 0.43 17

Ω4 66 0.34 21

Total 159

Further speedups possible via code optimizations, 

additive Schwarz and reduction of # sample mesh points.
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FOM discretization: 

• Spatial discretization given by a first-order cell-centered finite volume discretization with 𝑁 = 300 elements 

in each dimension 

• Implicit first order temporal discretization: backward Euler with fixed ∆𝑡 = 0.01

• Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

2D Shallow Water Equations (SWE)

Problem setup: 

• Ω = (−5,5)2, 𝑡 ∈ 0, 10 , Gaussian initial condition

• Coriolis parameter 𝜇 ∈ −4,−3,−2,−1,0 for 

training, and 𝜇 ∈ −3.5, −2.5, −1.5, −0.5 for testing

Hyperbolic PDEs modeling wave propagation below a pressure 

surface in a fluid (e.g., atmosphere, ocean).

𝜕ℎ

𝜕𝑡
+
𝜕(ℎ𝑢)

𝜕𝑥
+
𝜕(ℎ𝑣)

𝜕𝑦
= 0

𝜕(ℎ𝑢)

𝜕𝑡
+

𝜕

𝜕𝑥
ℎ𝑢2 +

1

2
𝑔ℎ2 +

𝜕

𝜕𝑦
ℎ𝑢𝑣 = −𝜇𝑣

𝜕(ℎ𝑣)

𝜕𝑡
+

𝜕

𝜕𝑥
ℎ𝑢𝑣 +

𝜕

𝜕𝑦
ℎ𝑣2 +

1

2
𝑔ℎ2 = 𝜇𝑢

Figure above: FOM solutions to SWE for 𝜇 = −0.5
(left) and 𝜇 = −3.5 (right).

https://github.com/Pressio/pressio-demoapps
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Choice of domain decomposition

• Non-overlapping DD of Ω into 4 subdomains coupled via additive Schwarz

 OpenMP parallelism with 1 thread/subdomain

• All-ROM or All-HROM coupling via Pressio*

Snapshot collection and reduced basis construction

• Single-domain FOM on Ω used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz boundaries

• BCs are imposed approximately by fictitious ghost cell states

 Implementing Neumann and Robin BCs is challenging

• Ghost cells introduce some overlap even with non-overlapping DD  

 ⇒ Dirichlet-Dirichlet non-overlapping Schwarz is stable/convergent!

Choice of hyper-reduction

• Collocation for hyper-reduction: min residual at small subset DOFs 

• Assume fixed budget of sample mesh points at Schwarz boundaries

Ghost 

cells

Figure right: non-

overlapping DD w/ ghost 

cells creating overlap

Figure above: sample mesh 

(yellow) and stencil (white) cells

Green: different from Burgers’ problem

*https://github.com/Pressio/pressio-demoapps

https://github.com/Pressio/pressio-demoapps
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Schwarz All-ROM Domain Overlap Study
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Study of Schwarz convergence for all-ROM coupling as a function of 𝑵𝑜 := 

cell width of overlap region (not including ghost cells).

• Dirichlet-Dirichlet coupling with no-overlap

(𝑁𝑜= 0) performs well with no convergence 

issues (movie, left) and errors comparable to 

Dirichlet-Dirichlet coupling with overlap 

(figure below, left)

Movie above: FOM (left), 4 subdomain ROM coupled via non-overlapping 

Schwarz (middle), and 4 subdomain ROM coupled via overlapping Schwarz 

(right) for predictive SWE problem with 𝜇 = −0.5.  All ROMs have 𝐾 =
80 POD modes.

• Schwarz iterations decrease (very roughly) with 

𝑁𝑜
0.25 (figure, right) whereas evaluating 𝒓(𝒒) scales 

with 𝑁𝑜
2

 ⇒ there is no reason not to do non-

overlapping coupling for this problem

Figures above: relative error and average # Schwarz iterations as a 

function of 𝜇 and 𝑁𝑜. Black 𝜇: training, red 𝜇: testing.
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Schwarz Boundary Sampling for All-HROM Coupling
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• Including too many Schwarz boundary points (𝑁𝑏) in sample mesh given fixed budget of 𝑁𝑠 sample mesh 

points may lead to too few sample mesh points in interior

• For SWE problem, we can get away with ~10% boundary sampling (movie above, right-most frame)

• Naïve/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Movie above: FOM (left), all HROM with 𝑁𝑏 = 5% (middle) and all HROM with 𝑁𝑏 = 10%
(left).  ROMs have 𝐾 = 100modes and 𝑁𝑠 = 0.5%𝑁 sample mesh points.

Figure above: example sample 

mesh with sampling rate 𝑁𝑏 = 10%

Key question: how many Schwarz boundary points need to be 

included in sample mesh when performing HROM coupling?
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Coupled HROM Performance

67

• For a fixed ROM dimension, Schwarz delivers lower error and comparable cost!

• There are noticeable cost savings relative to monolithic FOM!

• Accuracy similar for predictive 𝜇 (red) and non-predictive 𝜇 (black) cases.

Solid: 𝑁𝑠= 0.5%𝑁
Dashed: 𝑁𝑠 = 1%𝑁
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FOM discretization: 

• Spatial discretization given by a first-order cell-centered finite volume discretization with 𝑁 = 300 or 𝑁 =
𝑁 = 100 elements in each dimension 

• Implicit first order temporal discretization: backward Euler with fixed ∆𝑡 = 0.005

• Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

Teaser: 2D Euler Equations Riemann Problem

Problem setup: 

• Ω = (0,1)2, 𝑡 ∈ 0, 0.8 , homogeneous Neumann BCs

• Fix 𝜌1 = 1.5, 𝑢1 = 𝑣1 = 0, 𝑝3 = 0.029
• Vary 𝑝1; IC from compatibility conditions*

 Training: 𝑝1 ∈ 1.0, 1.25,1.5,1.75,2.0
 Testing: 𝑝1 ∈ 1.125, 1.375,1.625,1.875

𝜕

𝜕𝑡

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

+
𝜕

𝜕𝑥

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

𝐸 + 𝑝 𝑢

+ 
𝜕

𝜕𝑦

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝

𝐸 + 𝑝 𝑣

= 𝟎

𝑝 = (𝛾 − 1) 𝜌𝐸 −
1

2
𝜌(𝑢2 + 𝑣2)

*Schulz-Rinne, 1993.

Preliminary results:

• Schwarz can stabilize unstable monolithic ROM for 

fixed dimension 𝐾 (above)

• Since shock traverses all parts of domain, achieving 

speedups with Schwarz is more difficult

https://github.com/Pressio/pressio-demoapps


Outline

1. Schwarz Alternating Method for Coupling of Full 

Order Models (FOMs) in Solid Mechanics

• Motivation & Background

• Quasistatic Formulation

 Numerical Examples

• Extension to Dynamics 

 Numerical Examples

2. Schwarz Alternating Method for FOM-ROM* and 

ROM-ROM Coupling

• Motivation & Background 

• Formulation

• Numerical Examples

3. Summary and Future Work 

69

* Projection-based Reduced Order Model



Summary

The Schwarz alternating method has been developed for concurrent 

multi-scale coupling of conventional and data-driven models.

o Coupling is concurrent (two-way).

o Ease of implementation into existing massively-parallel HPC codes.

o “Plug-and-play” framework: simplifies task of meshing complex geometries! 

 Ability to couple regions with different non-conformal meshes, different element types

and different levels of refinement.

 Ability to use different solvers (including ROM/FOM) and time-integrators in different 

regions.               

o Scalable, fast, robust on real engineering problems

o Coupling does not introduce nonphysical artifacts.

o Theoretical convergence properties/guarantees.
















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71 Ongoing & Future Work71

• Development fundamentally new approach for simulating multi-

scale mechanical contact using the Dirichlet-Neumann Schwarz 

alternating method

 Contact constraints are replaced with boundary conditions

applied iteratively at contact boundaries

• Implementation of non-overlapping Schwarz in Sierra/SM

• Working with analysts to apply Schwarz                                       

to problems of interest to Sandia missions

 Laser welds

 Fastener modeling for joints

 Salt caverns for oil storage

• Rigorous analysis of why Dirichlet-Dirichlet BC “work” when 

employing non-overlapping Schwarz with discretizations that 

employ ghost cells

• Extension to coupling of non-intrusive ROMs (dynamic mode 

decomposition, operator inference, neural networks)

• Development of automated criteria to determine appropriate use 

of less refined or reduced-order models w/o sacrificing accuracy, 

enabling real-time transitions between different model fidelities

Contact boundaries Γ1 and Γ2

P

Impact of two 3D beams having different meshes with 

Schwarz contact method.  From [Mota et al., 2023].

From Murugesan et al., 2020.
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• S.L. Sobolev (1936): posed Schwarz method for linear elasticity in 

variational form and proved method’s convergence by proposing a 

convergent sequence of energy functionals. 

• S.G. Mikhlin (1951): proved convergence of Schwarz method for general 

linear elliptic PDEs.

• P.-L. Lions (1988): studied convergence of Schwarz for nonlinear 

monotone elliptic problems using max principle.

• A. Mota, I. Tezaur, C. Alleman (2017): proved convergence of the 

alternating Schwarz method for finite deformation quasi-static 

nonlinear PDEs (with energy functional 𝜱[𝝋]) with a geometric 

convergence rate.

S.G. Mikhlin

(1908 – 1990)

S.L. Sobolev (1908 – 1989)

𝜱 𝝋 = න
𝐵

𝐴 𝑭, 𝒁 𝑑𝑉 −න
𝐵

𝑩 ∙ 𝝋 𝑑𝑉

𝛻 ∙ 𝑷 + 𝑩 = 𝟎 A. Mota, I. Tezaur, C. Alleman

Using the Schwarz alternating as a discretization method for 

PDEs is natural idea with a sound theoretical foundation.

Theoretical Foundation

P.- L. Lions (1956-)
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• Notched cylinder subjected to tensile load with an elastic and J2 elasto-plastic regions.
•

• Coarse region is elastic and fine region is elasto-plastic. 

• The overlap region in the first mesh is nearer the notch, where plastic behavior is expected.

Overlap far from notch. Overlap near notch.

Coupled regions

Coarse, elastic region

Fine, elasto-plastic 

region

Notched Cylinder: Coupling Different Materials

The Schwarz method is capable of coupling regions with different material models.

76



• When the overlap region is far from the notch, no plastic deformation exists in it: the coarse and 

fine regions predict the same behavior. 

• When the overlap region is near the notch, plastic deformation spills onto it and the two models 

predict different behavior, affecting convergence adversely.

Overlap far from notch. Overlap near notch.

77
Notched Cylinder: Coupling Different Materials

Need to be careful to do domain decomposition so that 

material models are consistent in overlap region.



Single Domain Predictive ROM
78

Ω1

𝑥0 100

𝑦
1

0
0

0

• Uniform sampling of 𝒟 = 4.25, 5.50 × [0.015, 0.03] by a 3 × 3 grid                                           

⇒ 9 training parameters characterized by Δ𝜇1 = 0.625, Δ𝜇2 = 0.0075

 > 200 POD modes required to capture 99% snapshot energy

• Queried but unsampled parameter point 𝜇 = [4.75, 0.02]

• Reduced mesh resulting from solving non-negative least squares problem defining ECSW 

gives 𝑛𝑒 = 5,689 elements (9.1% of 𝑁𝑒 = 62,500 elements). 

Figure above: Reduced mesh of 

single domain HROM
Figure above: HROM and FOM 

results at various time steps

% SV 

Energy
𝑀

MSE* 

(%)

CPU time* 

(s)

95 69 1.1 138

99 177 0.17 447

* Numbers in table are w/o hyper-reduction



All-ROM Coupling
79

Ω1

𝑥0 100

𝑦
1

0
0

0

Ω2

Ω3Ω4

99% Singular Value (SV) Energy Retention95% Singular Value (SV) Energy Retention

Ω1
Ω2

Ω3
Ω4

1 SD

Subdomains

95% SV Energy 99% SV Energy

𝑀 MSE (%) CPU time (s) 𝑀 MSE (%) CPU time (s)

Ω1 57 1.1 85 146 0.18 295

Ω2 44 1.2 56 120 0.18 216

Ω3 24 1.4 43 60 0.16 89

Ω4 32 1.9 61 66 0.25 100

Total 245 700

• Method converges in only 3 

Schwarz iterations per 

controller time-step

• Errors O(1%) or less

• 1.47× speedup over all-FOM 

coupling for 95% SV energy 

retention case
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Schwarz Boundary Sampling for All-HROM Coupling
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Key question: how many Schwarz boundary points need to be 

included in sample mesh when performing HROM coupling?



81
Schwarz Boundary Sampling for All-HROM Coupling
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• Naïve/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

Movie above: FOM (left) and all HROM with 𝑁𝑏 = 5% (right).  

ROMs have 𝐾 = 100modes and 𝑁𝑠 = 0.5%𝑁 sample mesh points.

Figure above: example sample 

mesh with sampling rate 𝑁𝑏 = 5%.

Key question: how many Schwarz boundary points need to be 

included in sample mesh when performing HROM coupling?
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Schwarz Boundary Sampling for All-HROM Coupling
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• Naïve/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

• Including too many Schwarz boundary points (𝑁𝑏) in sample mesh given fixed budget of 𝑁𝑠 sample mesh 

points may lead to too few sample mesh points in interior

Movie above: FOM (left) and all HROM with 𝑁𝑏 = 5% (right).  

ROMs have 𝐾 = 100modes and 𝑁𝑠 = 0.5%𝑁 sample mesh points.

Figure above: example sample 

mesh with sampling rate 𝑁𝑏 = 0.

Key question: how many Schwarz boundary points need to be 

included in sample mesh when performing HROM coupling?
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Schwarz Boundary Sampling for All-HROM Coupling
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• Naïve/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

• Including too many Schwarz boundary points (𝑁𝑏) in sample mesh given fixed budget of 𝑁𝑠 sample mesh 

points may lead to too few sample mesh points in interior

Movie above: FOM (left) and all HROM with 𝑁𝑏 = 5% (right).  

ROMs have 𝐾 = 100modes and 𝑁𝑠 = 0.5%𝑁 sample mesh points.

Figure above: example sample 

mesh with sampling rate 𝑁𝑏 = 5%.

Key question: how many Schwarz boundary points need to be 

included in sample mesh when performing HROM coupling?
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Schwarz Boundary Sampling for All-HROM Coupling
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• Naïve/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

• Including too many Schwarz boundary points (𝑁𝑏) in sample mesh given fixed budget of 𝑁𝑠 sample mesh 

points may lead to too few sample mesh points in interior

Movie above: FOM (left) and all HROM with 𝑁𝑏 = 5% (right).  

ROMs have 𝐾 = 100modes and 𝑁𝑠 = 0.5%𝑁 sample mesh points.

Figure above: example sample 

mesh with sampling rate 𝑁𝑏 = 10%.

Key question: how many Schwarz boundary points need to be 

included in sample mesh when performing HROM coupling?
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Schwarz Boundary Sampling for All-HROM Coupling
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• Naïve/sparsely-sampled Schwarz boundary results in failure to transmit coupling information during Schwarz

• Including too many Schwarz boundary points (𝑁𝑏) in sample mesh given fixed budget of 𝑁𝑠 sample mesh 

points may lead to too few sample mesh points in interior

Movie above: FOM (left) and all HROM with 𝑁𝑏 = 5% (right).  

ROMs have 𝐾 = 100modes and 𝑁𝑠 = 0.5%𝑁 sample mesh points.

Figure above: example sample 

mesh with sampling rate 𝑁𝑏 = 15%.

Key question: how many Schwarz boundary points need to be 

included in sample mesh when performing HROM coupling?
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FOM discretization: 

• Spatial discretization given by a first-order cell-centered finite volume discretization with 𝑁 = 300 or𝑁 =
𝑁 = 100 elements in each dimension 

• Implicit first order temporal discretization: backward Euler with fixed ∆𝑡 = 0.005

• Implemented in Pressio-demoapps (https://github.com/Pressio/pressio-demoapps)

Model Problem 3: 2D Euler Equations Riemann Problem

Problem setup: 

• Ω = (0,1)2, 𝑡 ∈ 0, 0.8 , homogeneous Neumann BCs

• Fix 𝜌1 = 1.5, 𝑢1 = 𝑣1 = 0, 𝑝3 = 0.029
• Vary 𝑝1; IC from compatibility conditions*

 Training: 𝑝1 ∈ 1.0, 1.25,1.5,1.75,2.0
 Testing: 𝑝1 ∈ 1.125, 1.375,1.625,1.875

Figure above: FOM solutions to Euler Riemann 

problem for 𝑝1 = 0.875 (left) and 𝑝1 = 1.5 (right).

𝜕
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𝜌𝑢𝑣

𝐸 + 𝑝 𝑢

+ 
𝜕

𝜕𝑦

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝

𝐸 + 𝑝 𝑣

= 𝟎

𝑝 = (𝛾 − 1) 𝜌𝐸 −
1

2
𝜌(𝑢2 + 𝑣2)

*Schulz-Rinne, 1993.

Preliminary results (WIP)

https://github.com/Pressio/pressio-demoapps
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Choice of domain decomposition

• Overlapping and non-overlapping DD of Ω into 4 subdomains coupled 

via additive/multiplicative Schwarz

• All-ROM or All-HROM coupling via Pressio*

Snapshot collection and reduced basis construction

• Single-domain FOM on Ω used to generate snapshots/POD modes

Enforcement of boundary conditions (BCs) in ROM at Schwarz 

boundaries

• BCs are imposed approximately by fictitious ghost cell states

• Dirichlet-Dirichlet BCs for both overlapping and non-overlapping

Choice of hyper-reduction

• Collocation and gappy POD for hyper-reduction

• Assume fixed budget of sample mesh points at Schwarz boundaries

Figure above: DD of Ω into 4 

subdomains

*https://github.com/Pressio/pressio-demoapps

Figure above: Slow decay of POD 

energy for Euler problem

https://github.com/Pressio/pressio-demoapps
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Model Problem 3:  All-ROM Coupling + Overlapping Schwarz

• For smaller basis sizes and larger 𝑝1, monolithic ROM is 

unstable whereas Schwarz ROM gives accurate solution!

• Increased overlap degrades accuracy (top right)

• Shock transmission error significantly increases with overlap

• ~4.4 average # Schwarz iterations with additive Schwarz vs. 

~3.6 for multiplicative Schwarz

• With additive Schwarz, can achieve lower error than 

monolithic ROM for same CPU time (bottom right) 

Movie above: FOM (left), 𝐾 = 50monolithic ROM (middle), and 𝐾 =
50 overlapping Schwarz ROM with 𝑁𝑜 = 4 (left) for 𝑝1 = 1.875.
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Model Problem 3:  All-HROM Coupling + Non-Overlapping Schwarz

• Hyper-reduction via collocation works better than gappy POD

• Schwarz can give improved accuracy relative to monolithic ROM

• Achieving cost-savings w.r.t. monolithic FOM is WIP

Movie above: FOM (left), HROM (middle) and Schwarz All-HROM (right) solution.  

HROMs have 5% sampling rate and 200 POD modes.

Figure above: monolithic vs. decomposed HROM 

errors with 5% sampling rate no overlap.  

Preliminary results (WIP)

Figure above: collocation and gappy POD 

relative errors for K=200, 1% sampling rate.  



Energy-Conserving Sampling and Weighting (ECSW)90

• Project-then-approximate paradigm (as opposed to approximate-then-project)

𝑟𝑘 𝑞𝑘 , 𝑡 = 𝑊𝑇𝑟 ෤𝑢, 𝑡

=෍
𝑒∈ℰ

𝑊𝑇𝐿𝑒
𝑇𝑟𝑒(𝐿𝑒+ ෤𝑢, 𝑡)

• 𝐿𝑒 ∈ 0,1 𝑑𝑒×𝑁 where 𝑑𝑒 is the number of degrees of freedom associated with each mesh element (this is 

in the context of meshes used in first-order hyperbolic problems where there are 𝑁𝑒 mesh elements)

• 𝐿𝑒+ ∈ 0,1 𝑑𝑒×𝑁 selects degrees of freedom necessary for flux reconstruction

• Equality can be relaxed



ECSW: Generating the Reduced Mesh and Weights91

• Using a subset of the same snapshots 𝑢𝑖 , 𝑖 ∈ 1, … , 𝑛ℎ used to generate the state basis 𝑉, we can train the 

reduced mesh

• Snapshots are first projected onto their associated basis and then reconstructed

𝑐𝑠𝑒 = 𝑊𝑇𝐿𝑒
𝑇𝑟𝑒 𝐿𝑒+ 𝑢𝑟𝑒𝑓 + 𝑉 𝑉𝑇 𝑢𝑠 − 𝑢𝑟𝑒𝑓 , 𝑡 ∈ ℝ𝑛

𝑑𝑠 = 𝑟𝑘 ෤𝑢, 𝑡 ∈ ℝ𝑛, 𝑠 = 1,… , 𝑛ℎ

• We can then form the system

𝑪 =

𝑐11 … 𝑐1𝑁𝑒
⋮ ⋱ ⋮

𝑐𝑛ℎ1 … 𝑐𝑛ℎ𝑁𝑒

, 𝒅 =

𝑑1
⋮

𝑑𝑛ℎ

• Where 𝑪𝝃 = 𝒅, 𝝃 ∈ ℝ𝑁𝑒, 𝝃 = 𝟏 must be the solution

• Further relax the equality to yield non-negative least-squares problem: 

𝝃 = arg min𝒙∈ℝ𝑛||𝑪𝒙 − 𝒅||2 subject to 𝒙 ≥ 𝟎

• Solve the above optimization problem using a non-negative least squares solver with an early 

termination condition to promote sparsity of the vector 𝝃


