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Acronyms

Acronym Expansion
1T1R One transistor, one resistor
ADC Analog-to-digital converter
API Application programming interface
BGR Blue green red
CIFAR-
10/100

Canadian Institute for Advanced Research image recognition dataset with 10 or
100 classes

CNN Convolutional neural network
CPU Central processing unit
CUDA Compute Unified Device Architecture, developed by Nvidia
DAC Digital-to-analog converter
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FP Floating-point
GPU Graphics processing unit
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digits
MVM Matrix-vector multiplication
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ReLU Rectified linear unit
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Chapter 1

Introduction

1.1 Analog in-memory accelerators for neural networks

Neural networks are largely based on matrix computations. During forward inference, the most
heavily used compute kernel is the matrix-vector multiplication (MVM): Wx⃗. Inference is a first
frontier for the deployment of next-generation hardware for neural network applications, as it is
more readily deployed in edge devices, such as mobile devices or embedded processors with size,
weight, and power constraints. Inference is also easier to implement in analog systems than training,
which has more stringent device requirements. The main processing kernel used during inference is
the MVM.

Analog in-memory computing can potentially provide orders-of-magnitude reductions in the
energy consumption of neural network inference, compared to digital accelerators. This comes from
the efficiency of computing an MVM using analog electrical signals. This is shown conceptually
in Fig. 1.1. The memory cell conductances are set proportional to the values of the matrix W and
a vector of input voltages V⃗ , proportional to x⃗, is applied to the rows. An analog multiplication
is computed at each cell, where the current is the product of its conductance Gi j and the applied
voltage Vi. Kirchoff’s law then accumulates these products on the bit line (column) current I j to
form the dot product. The analog dot products are subsequently quantized using an analog-to-digital
converter (ADC). The dot products can then be digitally processed and transmitted to the next layer
of the neural network.
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Figure 1.1: (Left) Mathematical representation of an MVM, Wx⃗ = y⃗. The two sides of the equation
have been transposed for illustration purposes. (Right) Implementation of the MVM in the analog
electrical domain using circuit laws within a resistive memory array.
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Figure 1.2: Structure of CrossSim inference.

This analog approach has two fundamental advantages for energy efficiency:
• A multi-bit multiplication is conducted with a single device, and summations require no

special hardware (just wire crossings).
• The weight matrix does not need to be read out; only the inputs and outputs need to be

communicated between processing cores. This dramatically reduces data movement energy.
In-memory MVM has been demonstrated using a wide variety of memory cell technologies.

These include two-terminal resistive memories, such as resistive random access memory (ReRAM)
and phase change memory (PCM). Transistor-based memories such as floating-gate flash, charge
trapping flash, and ferroelectric FET have also be used. Besides the diversity of memory technologies
used, there are a variety of practical implementations of the MVM in Fig. 1.1 that differ at the circuit
or system level. All of these can be modeled by CrossSim Inference.

CrossSim Inference does not explicitly model the energy, area, or speed of analog inference
accelerators. Its primary goal is to model the accuracy of neural network inference when imple-
mented in an analog system. Despite its efficiency, analog computing has historically struggled
with accuracy and precision, compared to digital computers that can compute at arbitrary precision.
Neural network processing, however, presents a new opportunity for analog. Because the purpose
of neural networks is to generalize to unseen situations, they must necessarily have some built-in
tolerance to error. Whether the error tolerance of an algorithm or application is compatible with the
amount of error in an analog system is generally not clear. This is the fundamental question that
CrossSim Inference is designed to answer.
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1.2 Software overview

1.2.1 CrossSim Inference

Fig. 1.2 shows the software structure of CrossSim Inference, which in this manual will be referred
to simply as CrossSim for brevity. The software is written in Python, which interfaces readily with
TensorFlow/Keras, a popular machine learning framework [7]. In general terms, the tool takes four
inputs to an inference simulation:

1. The neural network model, provided as a Keras H5 file that contains the model’s topology
and weights.

2. A set of hardware parameters, specified in a Python configuration file, from the device level to
the system level, that specifies the analog inference accelerator. This includes design choices
for mapping data to physical parameters, the numerical values of the activation and ADC
ranges (provided in separate NumPy data files).

3. Characterized data on devices to use for inference, most importantly the error distribution of
programmed currents. If no technology is specified, generic memory device error models are
also available.

4. The dataset (inputs and labels) on which to simulate inference. CrossSim currently supports
several widely-used image classification datasets for benchmarking.

Below, we give an overview of the main processing steps in a CrossSim inference simulation, after a
hardware configuration file is provided by the user.

First, CrossSim parses the metadata of the Keras model to build an internal representation of the
neural network. Currently, CrossSim supports various layer types and features that are commonly
used in state-of-the-art convolutional neural networks (CNNs), including convolutions (standard and
depthwise), skip connections, element-wise operations, and concatenations. These can be composed
to form, for example, residual blocks in ResNets [11] or inception modules in Inception nets [20].
We follow the conventions in Keras for setting the padding and stride in convolutions and pooling
operations. CrossSim also supports quantized models that were trained using Sandia’s Whetstone
framework [18] or the Larq library [9].

After building the internal representation of the neural network topology, weights from every
layer in the Keras model are imported. The weight matrix is first quantized to the desired weight
resolution, if they are not already quantized in the Keras model. Then, if specified, batch normal-
ization parameters are folded into the weight matrices of the preceding convolution layer where
possible [12]. Since batch normalization is a static linear transformation during inference operations,
this folding step reduces the digital processing overhead in an analog inference accelerator.

The resulting weight matrix is then decomposed into arrays of memory cell conductances
according to the chosen mapping. CrossSim represents a layer’s weight matrix using a collection of
analog MVM cores. Each analog core consists of the computational memory array and models of its
peripheral circuitry and ADCs. A weight matrix may be broken up into multiple cores, depending
on the user-specified system parameters. Partitioning can be done for several reasons:

• A positive core and negative core if using a differential scheme to represent negative numbers.
• Cores for different bit slices of the digital weight values.
• Spatial partitioning of a large matrix into several smaller-sized cores.

For example, if using differential representation with 2 bits/cell and a maximum of 72 rows per
array, an 8-bit 4608×512 matrix (the largest matrix in ResNet50) is mapped onto 2×4×64 = 512

7



analog cores. Notably, “core” is merely an abstraction in CrossSim: these cores do not necessarily
need to be implemented as physically separate arrays in hardware. The provided activation ranges
and ADC ranges (if applicable) are loaded into the cores along with the weights. Different cores for
the same layer can have different ADC ranges if they belong to different weight bit slices. CrossSim
provides a way to collect statistics on the ADC inputs so that the ADC ranges for each core can be
calibrated for a given validation dataset and neural network. This is described in Section 9.4.

To model memory device programming errors, CrossSim applies a random conductance error
∆G to every device in the system. The programming error is sampled from a normal distribution
with zero mean and standard deviation σG based on the provided device data; σG can vary as a
function of G. If time-dependent data on device errors are provided, CrossSim can also apply a
time-dependent drift to the original conductance in addition to a time-dependent random error;
analytical expressions can also be used to model drift. After they are applied, programming errors
are considered static: they do not change across MVMs or images within an inference simulation.

Input data from the dataset are then loaded into CrossSim and supplied to the first layer of the
network. The analog cores are used for the MVM layers (convolutions and fully-connected layers)
while other operations such as pooling, activation functions, element-wise additions and inter-layer
communication are assumed to be implemented without errors in the digital domain. After the
digitization step that occurs separately within each analog core, the digital results from different
cores within a layer are aggregated via subtraction (for differential cells), addition (for row-wise
spatial partitions), or shift-and-add accumulation (for weight bit slices) to produce the full MVM
result. A convolution is unrolled into a sequence of sliding window MVMs as proposed by Shafiee
et al. [19] and described in Section 6.1.

CrossSim models every analog MAC during inference using the conductance values with errors
as described above. Within the analog core, cycle-to-cycle read noise is modeled by adding a random,
normally-distributed element-wise perturbation to the conductance matrix (with programming errors
already applied) with every MVM. ADC quantization is modeled using a numerical rounding
operation, given an ADC resolution and a specified range for the ADC inputs. The effects of
array parasitic resistance are modeled using an internal iterative circuit solver. The circuit solver is
specialized to a resistive array and makes certain linearizing assumptions about the memory cell
devices in order to more rapidly simulate MVMs using fast matrix operations. This circuit solver is
described in Section 8.3.

Inference simulations in CrossSim can be accelerated by CUDA GPUs, via the CuPy package
for Python. If this option is enabled, all weights and all intermediate data (from the input images to
the network outputs) are stored in GPU memory and processed there. We find that the amount of
GPU speedup is greatest if a very large amount of computation can be packed into a single matrix
arithmetic operation. To this end, CrossSim models multiple analog MVMs within a single matrix
operation using a block-diagonal conductance matrix. The number of MVMs to pack together can
be selected on a per-layer basis to optimize performance given the available GPU memory.

1.2.2 The CrossSim back end

This manual mainly describes how to use the front-end user interface of CrossSim inference to run
simulations of analog neural network inference. These front-end scripts call into low-level methods
in the CrossSim backend to perform the simulation. The same back-end supports both inference
and training simulations. In general, the user does not need to be familiar with the backend to use
CrossSim Inference. Here, we give a very brief overview of the backend software structure, intended
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Figure 1.3: Structure of CrossSim’s backend, and how it is called by CrossSim Inference.

for readers with a potential interest in adapting or extending the backend.
Fig. 1.3 shows how CrossSim Inference calls into the backend. The user specifies the simulation

settings in inference config.py and calls run inference.py to execute the simulation, as
described in Chapter 3. The functions in inference net.py then sets the backend simulation
parameters and orchestrates the inference simulation: maps the neural network to the analog
hardware, loads the weights, loads the dataset, steps through the dataset, and finally returns the
accuracy.

The full analog accelerators is represented through several hierarchical abstraction layers, each
of which is represented as an object type. From the highest to lowest level:

1. The full neural network is implemented in backprop.py as a collection of neural cores
supplemented by various digital functions. Only layers involving MVMs are allocated to
neural cores. The remaining layers (such as pooling and activations) are implemented as
error-free digital operations. Despite the name, backprop.py is used for both inference and
training.

2. A neural core implements the kernel for a single MVM layer of the neural network: either a
convolutional layer or a fully-connected layer. The neural core contains one or more wrapper
core objects representing pieces of the full-sized weight matrix, if the weight matrix is large.

3. A wrapper core implements one full-precision piece of the weight matrix. This means that
the wrapper core fully contains the positive and negative parts of the weight values, as well as
all bits of significance of the weight values (e.g. all weight bit slices), but may not contain
all of the elements in the weight matrix. The wrapper core is partitioned into one or more
numeric cores, and is organized depending on how the user specifies the weight values to be
mapped to conductances (Chapter 6).

4. The numeric core implements one resistive memory array with strictly positive device con-
ductances. This is where device- and circuit-level analog models are implemented or called.

Finally, various parameter objects are used to control CrossSim’s models at each hierarchical
abstraction layer.
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1.2.3 Top-level directory structure

The directories at the top level of CrossSim are summarized below:

• /adc/: contains scripts to calibrate ADC and activation ranges, and stores these ranges for
various neural networks and hardware configurations (See Chapter 9)

• /cross sim/:
– /cross sim/: contains the CrossSim back-end code
– /data/: contains the provided datasets and lookup tables (for training)

• /docs/: documentation, including this manual
• /examples/: contains example scripts for directly accessing CrossSim’s MVM cores, and

lookup table generation from experimental data (for training)
• /helpers/: contains various helper functions
• /inference/: contains the front-end scripts for CrossSim Inference
• /pretrained models/: contains pre-trained Keras neural networks models to be used with

inference
• /training/: contains the front-end scripts for CrossSim Training
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Chapter 2

Requirements and dependencies

CrossSim Inference is written using Python has been tested on Ubuntu Linux 18.04 and Windows
10. Testing was primarily performed using Python 3.7.6.

With GPU acceleration disabled, CrossSim can run on any CPU that supports the dependencies
below. For larger simulations (such as ImageNet), it is strongly recommended to use a CUDA-
capable GPU. CrossSim was tested on a NVidia V100 and a Nvidia Quadro RTX 4000, running
CUDA 10.2. Based on the amount of available GPU memory, some simulation parameters may
need to be adjusted to optimally run larger models (see Section 10.2).

CrossSim requires and has been tested on the following Python packages:
• TensorFlow 2.4.1 (includes Keras 2.4.0)
• NumPy 1.20.3
• CuPy 8.3.0 with CUDA 10.2, CuPy 10.3.1 with CUDA 11.2 (if GPU acceleration is enabled)
• SciPy 1.7.1
• Pandas 1.3.3
• MatPlotLib 3.4.3
Although the version numbers generally need not match exactly, we have found that using a

different Keras version can lead to errors during import or differences in the results between Keras
and CrossSim due to changes in the Keras API.

2.1 Model-specific requirements

Using some of the specific models provided with CrossSim Inference may require additional
packages. To run the ImageNet pre-processing scripts needed for specific neural networks, the
following packages may be required:

• OpenCV 4.5.4
• Torchvision 0.11.1
To simulate a neural network model that was quantized using Larq (see Section 5.1.2), the

following package is required:
• Larq 0.12.1
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2.2 Repository configuration

To reduce the size of the main CrossSim repository, the provided device lookup tables (for training),
benchmark datasets (for training and inference), and Keras model files (for inference) are included
in the separate cross sim data and cross sim model repositories, respectively. To ensure that
these directories are placed in the appropriate locations, CrossSim uses git submodules. After
cloning the repository, the following commands to configure and clone the submodules into the
appropriate places in the directory structure. Note that the combined size of the two repositories
is about 1.2GB (as of June 5, 2022) at download, and may take several minutes to clone. After
download, the submodule repositories are de-compressed.

git submodule init

git submodule update --progress

If you would like to use a different data or models repositories, for instance to use CrossSim with
a proprietary model, the remote locations of these repositories can be modified by changing the url
field in the .gitmodules file in the main CrossSim directory before running the git submodule

init and git submodule update commands above.
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Chapter 3

Using CrossSim Inference

3.1 Running inference simulations

CrossSim Inference is run from the inference top-level directory. Inside this directory, there are
two types of files:

• inference config XXX.py: Configuration files containing simulation parameters. Differ-
ent parameter sets can be saved in different files.

• run inference.py: Simulation scripts that select a configuration file, set up the simulation,
and run an inference simulation.

After setting up the configuration file inference config XXX.py, the file can be selected by
using the appropriate import command at the top of run inference.py:

import inference_config_XXX as config

This loads all of the parameters as fields of the config variable. The inference simulation can
then be run using the following command inside the inference directory:

python run_inference.py

Before each simulation with a given set of parameters, CrossSim will print to console a sum-
mary of the parameters. During the inference simulation, CrossSim will print the cumulative
inference accuracy up to that point in the simulation, at a frequency controlled by the parameter
count interval. The final accuracy is printed to console when the simulation ends.

3.2 Simulation parameters

The parameters in inference config are listed in Table 3.1. Much of the remainder of this manual
will focus on explaining the meaning and use of these parameters.

Table 3.1: Inference simulation parameters

Parameter Definition Section
Nruns # of times to run a simulation using identical parameters –

13



useGPU Whether to use GPU to accelerate simulations. 10.1
gpu num GPU ID to use for the simulation 10.1
task Name of dataset to run inference on 4.1
model name Name or path of the Keras neural network model 5.2
ntest # of test examples to run inference on 4.1
ntest batch # of test examples to load at a time 4.1
nstart ID of the first test example to use; defines a subset of the test set 4.1
randomSampling Whether to randomly sample a subset of the test set 4.1
count interval # of test examples between cumulative accuracy updates 3.1
time interval Whether to print elapsed time between accuracy updates –
topk The top k accuracies to report, e.g. 1 or (1,5) –
show model summary Whether to print a Keras summary of the model 5.2
weight bits Bit resolution of the weight values (0 = do not quantize) 6.2
weight percentile Percentile of each layer’s weight distribution that defines the quan-

tization range.
6.2

Nslices # of weight bit slices 6.6
NrowsMax Maximum # of rows (inputs) to an MVM 8.1
style Option for mapping negative numbers: "BALANCED" or "OFFSET" 6.5
balanced style Weight mapping option used if style is "BALANCED":

"one sided" or "two sided"

6.5

digital offset If style is "OFFSET", whether offset is computed digitally (vs
analog)

6.5

input bitslicing Whether input bits are applied sequentially via multiple MVMs 8.2
Rp Unit cell array metal resistance, normalized to minimum cell resis-

tance
8.3

noRowParasitics Whether to set parasitic voltage drop along the rows to zero 8.3
interleaved posneg If style is "BALANCED", whether to connect positive and negative

cells to the same column
8.3

Icol max Maximum allowable magnitude of column current, in Amps (0 =
no limit)

8.4

Icell max Maximum possible current through a cell, in Amps 8.4
fold batchnorm Whether to fold batch normalization parameters into the convolution

weight matrix, where possible
6.2

digital bias Whether to add bias digitally (vs analog) 6.2
bias bits Bit resolution of bias values, if digital bias is True (0 = do not

quantize)
6.2

On off ratio Ratio of maximum to minimum device conductance 7.1
error model Option for modeling cell programming errors 7.2
proportional error If using a generic error model error model is "alpha", whether

error is proportional to conductance (vs independent)
7.2

alpha error If using a generic error model error model is "alpha", the
amount of error α

7.2
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noise model Option for modeling cell read noise 7.4
proportional noise Whether to model read noise as proportional to conductance (vs

independent)
7.4

alpha noise The amount of read noise αnoise 7.4
t drift Amount of time elapsed between programming and inference (days) 7.3
drift model Model used to simulate conductance drift 7.3
adc bits ADC bit resolution 9.1
dac bits Input activation bit resolution 9.1
ADC per ibit If input bitslicing is True, whether to digitize the MVM result

after each input bit
9.2

adc range option Option for setting the ADC and activation ranges 9.3
pct Percentile option used for selecting a saved set of ADC ranges, if

adc range option is "calibrated"
9.4

3.3 Running parameter sweeps

The default run inference.py script runs one or more simulations without sweeping any param-
eters. The user can run a sweep over one or more of the parameters in inference config.py

by manually modifying run inference.py and saving the result as a new script. The parameter
sweep overrides the value for the parameter set in inference config.py.

This is done by defining a vector of values for the swept variable in the new script. Then, a for
loop is created that iterates over this vector, inside or outside the existing for loop for identical runs,
depending on the desired order. Inside the for loop, the appropriate field of the variable config
is set to the current value of the swept parameter. An example of a parameter sweep can be found
in run inference errorloop.py, which sweeps the amount of conductance programming error,
assuming a generic error model. This example also saves the outputs of the parameter sweep to CSV
files.
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Chapter 4

Loading the dataset

4.1 Available datasets

The dataset used for the inference simulation is specified by the parameter task. By default,
CrossSim supports the image classification datasets in Table 4.1.

Table 4.1: Provided datasets

Dataset task Max # test images Input shape # Classes
MNIST "mnist" 10,000 (ntest, 28, 28, 1) 10
Fashion MNIST "fashion" 10,000 (ntest, 28, 28, 1) 10
CIFAR-10 "cifar10" 10,000 (ntest, 32, 32, 3) 10
CIFAR-100 "cifar100" 10,000 (ntest, 32, 32, 3) 100
ImageNet "imagenet" 50,000 (ntest, 224, 224, 3) 1000

The first four datasets are included with CrossSim inside the directory cross sim/data/backprop.
ImageNet is not included for copyright reasons and due its large size, but CrossSim can process the
dataset for use in inference simulations if the path to the image files is provided by the user (see
Section 4.3).

Some neural networks may require the loaded test images to be pre-processed before running
inference. This will be discussed in Section 4.3 for ImageNet, and in Chapter 5 in general.

4.1.1 Selecting test images

Inference can be run on the full test set by setting ntest equal to the max # of test images above.
The entire dataset is stored in memory during inference.

Inference can also be run on a fixed or random subset of the test set, either to obtain results
faster or to accommodate memory limitations (if running a large dataset like ImageNet). The main
use cases are described below:

• ntest= N, ntest batch= N, randomSampling=False
Inference is performed on a subset of N images from the test set, which are stored contiguously
on disk. All N images are loaded at the same time to memory. See below for instructions on
how to choose which N images to use for inference. Setting ntest batch to 0 will default to
this setting.
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• ntest= N, ntest batch= M < N, randomSampling=False
Inference is performed on a subset of N images from the test set, which are stored contiguously
on disk. This subset is further divided into several batches with at most M images each. At
most M images are loaded at the same time to memory, and accuracy is separately reported
for each batch.

• ntest= N, randomSampling=True
The full dataset is loaded to memory. N images are randomly sampled from this set, and
accuracy is reported for this random subset. ntest batch is ignored.

The test images are stored in a fixed order on disk. In the first two cases above, where inference
is run on a subset of the dataset, the parameter nstart selects the index of the first image in the
subset. For example, one can distribute an inference simulation on the first 10,000 ImageNet images
across two GPUs running two instances of CrossSim. In this case, we set ntest=5000 for both, and
nstart=0 for the first GPU and nstart=5000 for the second GPU. To perform inference on the
next 10,000 images, we set nstart=10000 for the first GPU and nstart=15000 for the second
GPU.

4.2 Adding a new dataset

A custom dataset, in addition to the ones in Table 4.1, can be added by following the below steps:
1. Place the dataset files in the /cross sim/data/datasets/ folder.
2. Add a function to the file /helpers/dataset loaders.py that can be used to load the

dataset (partially or in full) into NumPy arrays: x test which contains the inputs, and
y test which contains the output labels. This function should support dataset truncation
(starting and ending at arbitrary indices). Use the existing functions in this file as a guide.

3. In the function inference() in /inference/inference utils/inference net.py, add
a clause that calls the newly defined dataset loader, and ensure that the inputs x test are
properly scaled.

4. For any neural network model that is to be used with the new dataset, follow the steps in Sec-
tion 5.3. Make sure the neural network model includes an input layer (of type InputLayer)
that matches the dimensions of the input images.

Currently, CrossSim Inference only supports classification datasets with N discrete labels, and
the final layer of the network has N outputs, the largest of which is selected as the predicted label.
Future releases may support regression tasks.

4.3 ImageNet

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC2012) validation set is not
provided with CrossSim due to copyright and the large file size. Instead, to run an ImageNet
inference simulation, the user must supply the raw test set JPEG images, then run one of the
provided pre-processing scripts to generate images that will be used by CrossSim. To reduce
memory and computational overhead, this pre-processing is not performed as part of the inference
simulation.

17



4.3.1 ImageNet pre-processing

The ImageNet pre-processing scripts can be found in /helpers/imagenet preprocess. To
use the preprocessing scripts, the user must first supply the path to the validation images in
imagenet path.py. The raw ILSVRC2012 images have variable dimensions with side typi-
cally being 500 pixels. The files should be named "ILSVRC2012 val XXXXXXXX.JPEG" where the
image number varies from 1 to 50,000. The user can also select a subset of the validation set to
pre-process, by supplying the number of images to pre-process (num images) and the index of the
starting image (n start). The pre-processing step loads the images as BGR, resizes and crops the
image typically to 224×224 pixels, then if needed by the neural network, zero-centers or scales the
result. The pre-processed images are stored in a NumPy array which has dimensions (num images,
224, 224, 3), which is then saved to a .npy file.

At the beginning of an inference simulation, CrossSim selects the appropriate .npy file to
load based on the chosen image subset and the neural network in inference config.py. The
logic for selecting the images is in the file /helpers/dataset loaders.py in the function
load imagenet(). The user should fill out the path of the pre-processed .npy image files at the top
of the function. By default, load imagenet() supports the following pre-processed partitions of the
validation set. These are specified inside /helpers/imagenet preprocess/preprocess XXX.py:

• num images=50, n start=0

• num images=1000, n start=0

• num images=5000, n start=0

• num images=25000, n start=0

• num images=25000, n start=25000

If desired, the user can modify the logic in load imagenet() to accept .npy files containing
different settings than the ones above. Even if the entire dataset fits inside memory, we recommend
loading no more than 5000 images per simulation for ImageNet. Leaving more memory available
for the CrossSim cores improves the performance of the code (see Section 10). The partitions above
containing 25,000 images are loaded 5000 images at a time.

The provided pre-processing scripts are summarized in Table 4.2. Different pre-processing
scripts are used to support the different pre-trained models provided with CrossSim, which originally
came from several different sources: the keras.applications library, MLPerf [17], and Nvidia
[1]. A small, fixed set of 50 pre-processed images using each of the five scripts can be found
in /cross sim/data/backprop/imagenet. Inference simulations can be run on this small set
without having to supply the raw validation images.

4.3.2 MLPerf calibration Set

MLPerf provides a subset of 500 images from the ImageNet validation set to use for calibrating
the hardware. CrossSim mainly uses these images to calibrate the ranges of the activations and
ADCs for each layer, similar to the process used in Jacob et al. [12] for quantizing ImageNet to
8 bits during inference operations. With the raw images available, these images can be selected
for pre-processing by using MLperf calibration=True in the pre-processing scripts. In an
inference simulation, these images are used in the dedicated ADC range calibration profiling script,
run inference profiling.py. The process for calibrating the ADC ranges will be described in
Chapter 9.
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Table 4.2: ImageNet pre-processing scripts

Pre-processing script Output
image size

Required
packages

Compatible
pre-trained models

preprocess keras.py (224,224,3) OpenCV 4.5.4 "ResNet50"

"VGG19"

"MobileNetV1"

"MobileNetV2"

preprocess keras

inception.py

(299,299,3) OpenCV 4.5.4 "InceptionV3"

preprocess torchvision.py (224,224,3) Torchvision 0.11.1 "ResNet50-int4"

preprocess MLPerfRN50.py (224,224,3) OpenCV 4.5.4 "ResNet50-v1.5"

preprocess

MLPerfMobileNet.py

(224,224,3) OpenCV 4.5.4 "MobileNetV1-int8"

4.3.3 Labels

In addition to the pre-processed test images, a label file y val.npy is needed that contains the
classes corresponding to these images, in the same order. The labels for both the full ImageNet
validation set and the MLPerf calibration set can be generated using generate labels.py. The
labels file y val.npy used for our tests can be found in cross sim/data/backprop/imagenet.
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Chapter 5

Loading the neural network model

The neural network model to use for an inference simulation is specified by a string (model name)
in the inference configuration file. This string is used to select and load a known model stored
as a keras .h5 file, match the model to its pre-processed images (for ImageNet), and apply other
model-specific simulation parameters.

5.1 Supported neural networks

5.1.1 Supported Keras layer types

CrossSim can run inference on a variety of neural networks supplied as Keras models, and supports
the most common layer types used in modern convolutional neural networks. These include the
following standard layer types in keras.layers:

• Convolution: Conv2D and DepthwiseConv2D (depth-wise convolutions)
• Fully-connected: Dense
• Pooling: MaxPooling2D, AveragePooling2D, GlobalMaxPooling2D, GlobalAveragePooling2D
• Element-wise addition: Add
• Concatenate: along channel dimension only
• BatchNormalization

• ZeroPadding2D

• Activations: Activation (ReLU, sigmoid, and softmax), ReLU, and activations inside
Conv2D, DepthwiseConv2D, and Dense.

• Flatten

• Ignored layers: Dropout, GaussianNoise, which are enabled only during training time.
Non-sequential models with skip connections (such as ResNet and Inception nets) are supported.

For convolution and pooling layers, CrossSim follows the same conventions as Keras to set the
amount of input padding based on padding style (”same” or ”valid”), kernel size, and stride. The
pooling, element-wise addition, concatenation, and activation operations are assumed to be carried
out in digital hardware and are therefore modeled without errors.

If a model contains a Keras layer type other than one of the above that can be ignored during
inference, the name of the Keras layer type can be added to the list ignoredLayerTypes in
keras parser.py. Currently, these include Dropout and GaussianNoise.
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5.1.2 Quantized neural networks: Whetstone and Larq

CrossSim also provides some support for models with quantized weights and/or activations trained
using Sandia’s Whetstone framework [18] as well as the Larq library [9]. The additional supported
layers are:

• Spiking BRelu activation type, used by Whetstone models to “sharpen” a linear ReLU
activation to a binary one during training. A maximum sharpness of 1 (typical during
inference) is a binary activation function with outputs of (0,1) with a transition at an input
value of 0.5.

• QuantConv2D and QuantDense: quantized layers from the Larq library. CrossSim supports
weight and/or input binarization using the sign function: outputs of (-1, 1) with a transition at
an input value of 0.

Several custom layers are also included to explicitly support the "ResNet50-int4" model trained
by Nvidia, which uses 4-bit weights and 4-bit activation functions with parameterized scaling steps.

5.2 Available pre-trained models

Table 5.1 shows the list of provided models that can be selected from the inference configura-
tion files using the parameter model name. The Keras H5 files for these models are stored in
/pretrained models/, sorted by directory. Some of the models require custom loading methods,
model-specific pre-processing methods, and/or model-specific simulation settings, the details of
which can be found inside the file
/inference/inference util/CNN setup.py. The detailed topology of the model can be
viewed by setting show model summary to True.

All of the non-ImageNet models were trained in-house, while all of the ImageNet models are
pre-trained reference models from open-source repositories. The Keras models are all provided
as part of the CrossSim models repository, except for the large VGG-19 model. For VGG-19, the
weights are downloaded from keras.applications at the beginning of the simulation (the user can
store the downloaded weights locally, to speed up subsequent simulations).

5.3 Adding custom models

In addition to the models provided, users can perform inference simulations on their own trained
Keras H5 models, provided that it does not contain special layer types not listed in Section 5.1.1. To
add a new model, the file /inference/inference util/CNN setup.py needs to be modified,
as described below.

5.3.1 Model path and loading

The first step in adding a new model is to include it as an entry to the function build keras model(),
which takes a model name keyword as input and returns a Keras model object. For many CNN
models, this is straightforward: simply add a new if clause for the model name and pass the path to
the H5 model file into the function load keras model(). For more complex models, additional
steps may be needed (see file for examples).

After the model has been added to build keras model(), the model name can then be
specified in inference config.py together with the matching dataset name.
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5.3.2 Model-specific parameters

In order to properly load the dataset and hardware configuration, some additional parameters may
need to be set for the added model, inside the function model specific parameters(). These
are listed below:

• imagenet preprocess: For an ImageNet model, this is a string that specifies how the
dataset should be pre-processed for this model. This value is used as a keyword in the
function load imagenet() in /helpers/dataset loaders.py, to select the appropriate
pre-processed dataset in Table 4.2 and (in some cases) to select the appropriate secondary
pre-processing function in keras.applications. For a new model, load imagenet()

may need to be modified to include the correct pre-processing method. For non-ImageNet
models, set the value to None.

• subtract pixel mean: For CIFAR-10 and CIFAR-100, this Boolean specifies whether the
test set input values should be zero-centered using the mean values for each channel over the
training set. This zero-centering is used, for example, in the CIFAR-10 ResNets [11].

• dataset normalization: A string specifying how the loaded dataset should be normal-
ized ("none" to do nothing). Available options include "unsigned 8b" and "signed 8b"

which assume uint8 inputs in the range (0,255) and scale them to the range (0,1) and (-1,1),
respectively. These options are sufficient for the provided models, but other options can be
added as new strings in this function and implemented in inference net.py.

• positiveInputsOnly: A list of Boolean values, one for each convolution or fully-connected
layer in the network. If True for that layer, the inputs are strictly positive or zero; this is the
case when the layer directly follows a ReLU activation. This condition removes the need for
a sign bit in the input.

– Note: To determine which layer corresponds to the ith element positiveInputsOnly[i],
check the layer’s name using layerParams[i][’name’] in run inference.py.

• memory window: The maximum number of consecutive layers whose activations are stored
at one time in memory. Reducing this number can free up some memory in non-sequential
CNNs and give a slight improvement in simulation speed. A large value (such as 10) is always
safe, but the smallest value that does not throw an error during inference is slightly faster.

• larq: Set this to True if the model is a Larq quantized model.
• whetstone: Set this to True if the model is a Whetstone quantized model.

5.3.3 ADC and activation ranges (optional)

If the ADC or activation quantization is enabled (ADC bits or DAC bits not equal to zero), then
the ranges of each layer’s ADC and activation values need to be specified. To maximize the accuracy
at a given resolution, these ranges need to be calibrated, and the calibrated ranges are loaded inside
the function load adc activation ranges(). The process used for determining and loading
these ranges is described in Section 9.4. If ADC or activation quantization is not being modeled, no
change is necessary to this function.

Alternatively, ADC/activation quantization can be enabled without calibration using simple
design rules for the ranges as described in Section 9.3, though this is likely to yield sub-optimal
accuracy.
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5.3.4 Performance tuning (optional)

A new if clause can optionally be added to the function get xy parallel() in order to tune
CrossSim’s performance on the model. The parameters in this function determine how many sliding
window MVMs in a convolution can be packed into a single call to the MVM kernel in NumPy or
CuPy. In general, optimizing these parameters can improve performance by several fold, especially
when running simulations on GPUs with much larger or much smaller amounts of GPU memory.
This performance optimization is described in more detail in Section 10.2.
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Table 5.1: Provided neural network models (FP = floating point)
Model name Task FP

accuracy
Notes

CNN6 MNIST 98.6% Four convolutional + two dense layers,
61.6K weights.

CNN6 v2 MNIST 98.8% Same structure as CNN6 without final pool-
ing layer and uses bounded ReLU (0,1),
119.3K weights.

cifar10 cnn brelu CIFAR-10 84.5% Four convolutional + two dense layers with
bounded ReLU (0,1), 4.36M weights.

whetstone cifar10 CIFAR-10 82.9% Whetstone CNN, binary activations, 4.24M
weights.

larq cifar10 CIFAR-10 82.6% Larq CNN, binary weights and binary acti-
vations, 10.36M weights.

ResNet14 CIFAR-10 90.7% Follows topology in Ref. [11], 176.6K
weights.

ResNet20 CIFAR-10 91.3% Follows topology in Ref. [11], 274.4K
weights.

ResNet32 CIFAR-10 91.9% Follows topology in Ref. [11], 470.2K
weights.

ResNet56 CIFAR-10 92.3% Follows topology in Ref. [11], 861.8K
weights.

ResNet56 cifar100 CIFAR-100 73.9% Follows topology in Ref. [11] with 4× more
channels (16× weights) as ResNet56.

Resnet50 ImageNet 74.9% From keras.applications.
Resnet50-v1.5 ImageNet 76.5% From MLPerf Inference Benchmark [17].
Resnet50-int4 ImageNet 76.2% Trained by Nvidia for the MLPerf Inference

Benchmark [1].
VGG19 ImageNet 71.3% From keras.applications. Weights will

be downloaded.
InceptionV3 ImageNet 77.9% From keras.applications.
MobilenetV1 ImageNet 70.4% From keras.applications.
MobilenetV2 ImageNet 71.3% From keras.applications.
MobilenetV1-int8 ImageNet 70.6% From MLPerf Inference Benchmark [17].
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Chapter 6

Weight mapping parameters

This section describes the available options for mapping neural network weight values to memory
device conductances G. These parameters can be modified in the inference configuration file,
inference config.py. In the following discussion, Gmin is the minimum conductance of a cell
and Gmax is the maximum conductance; see Section 7.1 on setting their ratio.

6.1 Convolution mapping

CrossSim maps convolutions to MVMs in resistive memory arrays using the scheme proposed by
Shafiee et al. [19], which is depicted in Fig. 6.1. The full convolution is executed as a sequence
of sliding windows, each of which maps to a single array MVM. A single sliding window input
(containing all Nic input channels) is unrolled into a vector which drives the rows of the array. The
output on the array columns contains the sliding window result in each of the Noc output channels.
The weight matrix is fully mapped to a resistive memory array of dimensions KxKyNic ×Noc. The
number of MVMs required is equal to the number of 2D sliding windows, which is also equal to the
number of elements along the x and y dimensions of the output feature map.

A fully-connected layer with Nin inputs and Nout outputs is directly mapped to a matrix with
dimensions Ninputs ×Nout and is executed using one MVM per input.

If the weight matrix is large, it may be partitioned spatially over multiple arrays. This is covered
in Section 8.1.

6.2 Weight resolution

6.2.1 Weight quantization and range

Weight values in the convolution and fully-connected layers can be quantized before being mapped
to device conductances. In order to quantize the weights, it is necessary to specify: the bit resolution
NW of the quantized weights, and the numerical range over which the quantization will occur. The
former is specified using the parameter weight bits. Setting this value to 0 disables quantization,
so floating-point weights (or already quantized weights) are mapped directly to conductances. Other
errors can subsequently be applied to these conductances.

CrossSim provides a simple option to set the quantization range, using the weight percentile

parameter; denote the value of this parameter as P. Its use is described as follows where:
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Figure 6.1: Scheme used to map a convolution to a resistive memory array. Each sliding window
corresponds to one array MVM.

• P = 100: For a given layer’s weight matrix W, the maximum absolute weight is found:
Wabsmax = max(|W|). The quantization range is then set to [−Wabsmax,+Wabsmax]. This is the
recommended default option.

– This option ensures that no weight value in W is clipped. If weight bits is sufficiently
high (e.g. ≥8 bits for ResNet50, ≥11 bits for MobileNetV2), this option leads to only a
very small accuracy degradation.

• P < 100: The Pth percentile value and the (100−P)th percentile value are found in W. Of
these two values, the one with a larger absolute value is selected; call the absolute value of
this quantity WP. The quantization range is set to [−WP,+WP].

– Currently, only a single value of P is supported for the full network.
– This option causes the largest and smallest weight values to be clipped. It assumes that

weights are signed. This option is intended for cases where weight bits is small, in
which case better accuracy may be possible by using a narrower quantization range,
which leads to a smaller separation between weight levels. Modifying P trades off
clipping and quantization errors.

• P > 100: The quantization range is set to [− P
100 ×Wabsmax,+

P
100 ×Wabsmax]. Note that some

part of the conductance range will not be utilized by any of the weights (before applying
conductance errors or drift).

In all cases, the quantization range is symmetric about zero. This is a physical necessity if using
differential cells. When using offset subtraction, this implies that the offset corresponds to a value
of zero (see Section 6.5). Importantly, the above process is done separately for every layer, i.e. the
conversion factor between weight and conductance varies from layer to layer depending on the value
of Wabsmax.

Generally speaking, weights are quantized by finding 2NW equally spaced levels in the quantiza-
tion range, then rounding each weight to the nearest level. The specific implementation of weight
value quantization depends on the negative number representation scheme: see Section 6.5. For
example, 8-bit quantization with differential cells uses 255 distinct weight levels where the center
level is the value zero. With offset subtraction, 256 weight levels are used over the quantization
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Figure 6.2: Addition of bias weights in the digital and in the analog domain.

range. The difference is small if weight bits is large.

6.3 Bias weights

A convolution or fully-connected layer often includes the addition of a bias vector b to the matrix-
vector or matrix-matrix product. As with batch normalization, bias addition can be handled in
analog or in digital. This is controlled by the parameter digital bias: True for digital, False
for analog. The two cases are shown in Fig. 6.2.

In the analog case, bias weights are implemented as an additional row in the memory array,
which is always driven by an input corresponding to a value of 1; physically, the addition occurs by
Kirchoff’s circuit law. The bias weights are considered part of the weight matrix W along with the
other weights.

In the digital implementation, the bias weights are not considered part of W and are stored as
digital values and added to the digitized dot products using a digital arithmetic unit; this is assumed
to be error-free, though the bias weights can be quantized from floating-point precision.

We have found that digital bias=True often yields higher accuracy, especially if fold batchnorm

is set to True (see below). This is because the bias weights and the other weights can lie in drastically
different numerical ranges. If the difference in the numerical ranges is too large, it may no longer be
possible to represent both the weights and bias with adequate precision once weight quantization and
device errors are taken into account. However, an analog bias is more energy-efficient since adding
the bias digitally incurs a small overhead. Whether this choice affects the accuracy is application
dependent and should be evaluated by comparing the results of inference simulations.

If digital bias=True, the number of bits used to quantize the bias weights is controlled
by the numerical parameter bias bits. Bias quantization follows the same procedure as weight
quantization above, but always assumes P = 100, regardless of the value of weight percentile.
A value of 0 for bias bits disables bias quantization.
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6.4 Batch normalization parameters

During inference time, a batch normalization layer can be “folded” into a preceding convolution
layer, since both layers apply linear transformations to the input and the two layers do not need to
be kept separate during inference. The folding operation is given by [12]:

Wfolded = γ
W√

σ2 + ε
(6.1)

bfolded = γ
b−µ√
σ2 + ε

+β (6.2)

where the left-hand terms represent the weight matrix and bias vector after folding, (µ,σ ,γ,β ) are
the batch normalization parameters (unique to each output channel), and ε is a small constant to
avoid division by zero.

Folding greatly reduces the complexity of the analog inference accelerator, as no dedicated
processing component is needed to perform the batch normalization computation, which involves
numerous element-wise multiplications and divisions on the MVM output. CrossSim supports
either option, through the parameter fold batchnorm in the configuration file. If True, batch
normalizations are folded and computed in analog inside the memory array together with the
convolution. This folding is applied before weight quantization and all other weight mapping steps.
If False, the batch normalization is computed as a separate digital step without error.

Batch normalization folding can have an effect on accuracy, because the folding process changes
the value distribution of each layer’s weights, and the severity of analog errors can depend on these
values. Among the ImageNet networks, we have found that the difference is most noticeable with
MobileNet, which has fewer total parameters and is more sensitive to weight precision.

6.5 Negative number representation

One of the basic design choices in an analog in-memory inference accelerator is how to map both
positive and negative weights onto a memory array, whose cell conductances are strictly positive.
There are two main methods to do this: differential (or balanced) cells, and offset subtraction. These
are shown in Fig. 6.3. One of these options can be selected using the style parameter, using the
values "BALANCED" or "OFFSET", respectively.

6.5.1 Differential cells

The differential cells scheme uses the difference in conductance of two cells to represent a matrix of
signed weights W:

W = W+−W− (6.3)

where W+ and W− are strictly positive or zero, and thus can be mapped separately to conductances.
This definition leaves some ambiguity about how two conductance values are decided from a single
weight value. This ambiguity is broken using the parameter balanced style, used only if style
= "BALANCED":

• balanced style = "one sided": One conductance in the pair encodes the magnitude if
the weight is positive, while the other encodes the magnitude if the weight is negative. In every
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Figure 6.3: Two schemes for representing negative numbers, illustrated for the case where
weight bits=8 with no bit slicing. For illustration, the weights are rescaled to the ranges shown.
(a) Differential cells using a one-sided scheme, (b) Offset subtraction. The conductance is labeled in
terms of the state number in ascending order, where 0 corresponds to Gmin and 127 (255) corresponds
to Gmax for a 7-bit (8-bit) cell.

pair, the conductance that does not encode the magnitude is set to the lowest conductance
state Gmin (encoding zero). A weight value of zero maps to a pair of cells at Gmin. This is
shown in Fig. 6.3(a). This is the recommended option for inference, as it maps weight
absolute values proportionally to conductance. This has many benefits for error resilience,
summarized by Xiao et al [22].

• balanced style = "two sided": A weight value of zero maps to a pair of cells at the
midpoint conductance between Gmin and Gmax. For more positive weights, one conductance
is increased toward Gmax while the other is decreased toward Gmin. For negative weights, this
is reversed.

Fig. 6.3(a) shows the one-sided differential cells representation scheme for a an 8-bit weight
matrix. Note that since two devices are used per weight, the resolution requirement on each device
is one bit less than weight bits. When not using bit slicing, the conductance level Gmax is used
to represent the weight(s) in each layer with the maximum absolute value. The conductance level
Gmin is used for at least one device in every differential pair. A weight value of zero uses Gmin in
both devices. Note that due to a redundancy for the value of zero (either device can be used as the
magnitude), the scheme maps 255 unique weight values rather than the full 256.

There are multiple ways to implement the subtraction that is part of the differential scheme.
The currents can accumulate separately in the positive and negative columns, then the two column
currents can be subtracted using an analog circuit. The currents can also be subtracted via Kirchoff’s
circuit law if the two devices in the pair conduct current in opposite directions: this is the case shown
in Fig. 6.3(a). It may also be possible to subtract the currents within each differential pair before
accumulating on a column. CrossSim remains agnostic to how the actual subtraction is performed,
but it does assume that the subtraction is performed in the analog domain before the ADC. The
ADC then digitizes the difference.
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6.5.2 Offset subtraction

Offset subtraction implements a signed weight matrix W by using an added offset to convert negative
weights to positive conductances:

W = Wprog −Woffset (6.4)

where Wprog is strictly positive or zero, and Woffset is a scalar offset that is subtracted element-wise.
The offset is chosen such that a zero weight in W is mapped to a value of Woffset in Wprog. This is
shown in Fig. 6.3(b). In this case, all 256 conductance levels can be utilized, though in order to
keep the symmetry about zero, the highest and lowest levels map a smaller set of weight values.

When computing an MVM between W and a vector x⃗, the above becomes:

Wx⃗ = Wprog⃗x−Woffset I⃗x (6.5)

where I is the identity matrix. In an analog accelerator, there are two ways to compute the subtraction
of the offset (second term):

• Compute the second term using digital hardware, then subtract this offset from each of the
digitized dot product values in Wprog⃗x, which are computed in analog. This shown in Fig.
6.3(b).

• Compute the second term in analog using an additional column of the array called the “unit
column.” This was first proposed by Shafiee et al [19]. This result is digitized, then subtracted
from each of the digitized dot product values.

The first option is selected by setting the parameter digital offset=True, while the second
is chosen by setting digital offset=False. This parameter is used only if style="OFFSET".
In general, we find that the former yields better error resilience. This is because if the conductances
in the unit column have programming errors, then this same error is transferred to all of the dot
products within the layer during an MVM [22].

When not using bit slicing, the conductance level Gmax is used to represent the maximum
weight in the quantization range, while the level Gmin is used to represent the minimum. Since the
quantization range is forced to be symmetric about zero while the actual weight distribution may
not be, some conductance levels close to these endpoints may be left unused. A weight value of
zero maps approximately to the midpoint of the conductance range.

6.6 Weight bit slicing

Bit slicing is a technique that is used to represent weight values with more bits of precision than
available in a single device. Bit slicing divides the weight bits into multiple slices, and the results of
bit sliced MVMs are combined via shift-and-add reduction. For example, a matrix of 6-bit integers
can be divided into two slices of three bits each:[

12 58
29 50

]
= 23

[
1 7
3 6

]
+20

[
4 2
5 2

]
(6.6)

In CrossSim, the parameter Nslices sets the number of bit slices. A value of 1 disables bit
slicing. CrossSim then decides the precision of each bit slice based on the weight resolution,
weight bits. CrossSim supports any combination of the two parameters, though some pairs will
lead to underutilization of the device conductance range, as described below.

The specific way that bit slicing is used to map weights depends on the negative number
representation scheme. These are described below.
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Figure 6.4: Bit slicing configurations with Nslices=4 that maximally utilize the device conductance
range. (a) Differential cells with weight bits=9, (b) Offset subtraction with weight bits=8.

6.6.1 Bit-sliced differential cells

Consider the case where an 8-bit weight matrix W is split into four 2-bit slices, i.e. weight bits=8,
Nslices=4. The decomposition of an MVM is done based on the following equation:

Wx⃗ = 26 (W+
3 x⃗−W−

3 x⃗
)
+24 (W+

2 x⃗−W−
2 x⃗

)
+22 (W+

1 x⃗−W−
1 x⃗

)
+
(
W+

0 x⃗−W−
0 x⃗

)
(6.7)

Suppose that as in Fig. 6.3(a), W has integer values in the range [−127,+127] and that we use a
sign-magnitude bit representation. The seven magnitude bits of the weight values are split across
four 2-bit slices. Within each 2-bit slice, the differential cells representation in Equation (6.3) is
used. The sign bit is used to decide which of the cells encodes the magnitude in all slices. In this
example, each 2-bit matrix W±

i represents one sign of one slice, and is integer-valued in the range
[0,3]. As in the differential cells case, an important property of this mapping is that a weight value
of zero is mapped entirely onto the Gmin state in all slices as shown in Fig. 6.4(a). Note that this
corresponds to the “one-sided” mapping of differential cells described earlier (with bit slicing, we
do not provide a two-sided mapping).

Note that in the above example, there is under-utilization of the device conductance range
because seven magnitude bits are sliced across four 2-bit slices, which can represent eight magnitude
bits. The top half of the conductance range in the top slice is not utilized. Using the same hardware, it
is possible to fully represent 9-bit signed weights in the range [−255,+255]. This is the case shown
in Fig. 6.4(a). In general, the device conductance range is fully utilized if (weight bits-1) is
divisible by Nslices. If this condition is not met, it may be possible to obtain a higher accuracy
with the same hardware by changing the weight resolution so that it is met.

The four quantities inside parentheses in Equation (6.7) are the dot products corresponding
to each bit slice. ADC quantization is applied separately to each slice, with the option to use
different ADC ranges for each slice; this will be described in Chapter 9. As in the unsliced case,
the subtraction within each slice is assumed to occur in analog before the ADC. The shift-and-add
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operation over the slices in Equation (6.7) is assumed to be error-free, as it is carried out on the
digitized slice-wise dot products.

6.6.2 Bit-sliced offset subtraction

Consider again the case with weight bits=8 and Nslices=4. Using offset subtraction, the MVM
is decomposed as:

Wx⃗ = 26W3⃗x+24W2⃗x+22W1⃗x+W0⃗x−27I⃗x (6.8)

This time, W is an 8-bit matrix with integer values in the range [−128,+127] and Wi are the 2-bit
slices of W from lowest to highest significance. Each element of Wi is integer-valued in the range
[0, 3] and mapped to the conductance of a single cell. After the results of the slices are aggregated,
an offset term is subtracted to represent negative weights. Here, the offset is chosen to be 27 to map
the range [−128,+127]. This case is shown in Fig. 6.4(b).

Like the offset subtraction case in Equation (6.5), the conductances are not proportional to the
weight magnitudes. Specifically, a zero weight is mapped to an intermediate conductance state in
the top slice.

Slightly different from the bit-sliced differential cells case above, the device conductance range
is fully utilized if weight bits is divisible by Nslices. If this condition is not met, it may be
possible to obtain a higher accuracy with the same hardware by changing the weight resolution so
that it is met.

32



Chapter 7

Device parameters

This section describes the options for modeling the effects of memory device properties on inference
accuracy. These device-level effects are applied at several stages, as shown in Fig. 7.1: during
the mapping of weights to conductances, after mapping to conductances, and during the inference
simulation.

7.1 Conductance On/Off ratio

The ratio of the maximum programmable conductance Gmax and the minimum programmable
conductance Gmin can be specified using the parameter On off ratio. Only the dimensionless
ratio Gmax/Gmin needs to be specified, not the individual conductances. A value of 0 species an
infinite On/Off ratio, i.e. Gmin = 0.

The On/Off ratio sets a lower limit on how much current can be drawn by any given device in
the array. The On/Off ratio is critical in cases where weights with low absolute value are mapped to
low conductances (i.e. one-sided differential cells). In this case, the On/Off ratio determines how
much the accuracy degrades as a result of parasitic array IR drops, or programming errors/read noise
that is proportional to the conductance [22].

Weight

matrix

Conductance 

matrix (or 

matrices)

Conductance 

matrix with 

errors

Conductance 

matrix with 

errors, noise, 

and parasitics
Weight mapping (6.2-6.6)

On/Off ratio (7.1)

Array partitioning (8.1)

Programming error (7.2)

Drift (7.3) Read noise (7.4)

Parasitic resistance (8.3)

Core initialization Inference simulation

Figure 7.1: Sequential application of device-level effects when representing a neural network weight
matrix.
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Figure 7.2: Two generic models of conductance programming error. (a) State-independent error,
and (b) State-proportional error.

7.2 Conductance programming errors

Random conductance programming errors are sampled and applied once per simulation, during the
weight mapping step just prior to inference (during core initialization). These random errors do not
change between MVMs or input images. The errors do change between different inference runs;
for example, the errors will be different for each call to run inference.py and for each run of a
multi-run simulation with Nruns runs.

Two methods are available in CrossSim to apply programming errors. The generic conductance
error model uses a simple model of the error characteristics for a memory device. This option can
be useful if an algorithm’s resilience to conductance errors in general is being evaluated, and can
be used to perform sweeps of the error magnitude. It may also be useful for determining what
kind of error characteristics are desirable in a device. The second option allows the user to enter a
custom programming error model, informed by experimental data or data from low-level physics
simulations. This option is used to determine the accuracy of an algorithm when implemented using
a particular memory device technology.

7.2.1 Generic conductance error model

CrossSim includes two types of generic conductance programming error, shown in Fig. 7.2. The
generic error option is selected by setting error model="alpha". From there, state-independent
error is selected by setting proportional error=False, and state-proportional error is selected by
setting proportional error=True. The amount of each type of error is then set by the parameter
alpha error as described below. Any conductance that is perturbed beyond the range (Gmin,Gmax)
will be clipped to the endpoints of this range.

In the state-independent error model, the amount of conductance error is independent of the
target conductance G: see Fig. 7.2(a). The expected amount of programming error ⟨∆G⟩ is a fixed
fraction αind of the maximum conductance Gmax. For each conductance, an error ∆G is sampled
from a normal distribution with zero mean and a standard deviation of αindGmax. The value of αind
is set by the parameter alpha error in inference config.py. Note that the definition of αind
differs slightly from the definition used by Xiao et al. [22].

In the state-proportional error model, the amount of conductance error is proportional to the
target conductance G: see Fig. 7.2(b). As in the state-independent case, the programming error
for every conductance is sampled from a normal distribution, but the standard deviation of the
distribution now depends on the conductance as αpropG. The error increases with conductance, and
a conductance of zero has an error of zero (though this is accessible only with an infinite On/Off
ratio). The value of αprop is also set by the parameter alpha error.
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Figure 7.3: Error characteristics of three exemplary devices provided with CrossSim. (a) SONOS
device from Xiao et al. [21] with a saturating exponential fit to the measured points, (b) PCM device
from Joshi et al. [13] with a quadratic fit, (c) ReRAM device from Milo et al. [15] with a linear fit.

The two simple generic models will not perfectly describe the programming error characteristics
of any real device. However, for some cases they are good approximations. For example, the ReRAM
devices in Yao et al. [25] appear to very closely follow a state-independent error characteristic. By
contrast, Xiao et al. [21] recently showed that SONOS flash memory devices in the subthreshold
regime can have error characteristics that are approximately state-proportional.

Whether or not these generic models fit the properties of any real device, they provide the ability
to perform sweeps over the amount of programming error, using the parameter alpha error. This
can be used to determine the sensitivity of a neural network’s accuracy to varying degrees of error in
a typical analog hardware implementation.

In terms of end-to-end accuracy, the key difference between the two error types is data depen-
dence, or its lack thereof. For a given array size, state-independent conductance errors have no
dependence on the weight matrix. On the other hand, the overall effect of state-proportional errors
depends strongly both on the distribution of weight values used by the neural network, and on the
mapping scheme used to map the weights to conductances (see Chapter 6). In practice, we have
found that there is generally a large difference in a neural network’s sensitivity to the two error types.
Since neural networks have weight value distributions that are skewed toward low absolute values,
if these low values can be mapped to low conductances (e.g. by using differential cells), then it is
highly advantageous to have small programming error at low conductance [22].

7.2.2 Custom conductance error model

The programming error vs. conductance properties of many real devices cannot be modeled as a
simple state-independent or state-proportional error model. CrossSim can support arbitrary state-
dependent programming error characteristics, provided by the user as a custom function (written in
Python). The user can specify a custom error model by modifying the following file:

/cross_sim/cross_sim/xbar_simulator/parameters/custom_device/

weight_error_device_custom.py

The function applyCustomProgrammingError() in this file will be called each time a resistive
memory array is created to map a weight matrix, fully or partially. The argument input to this
function contains the conductance values for the array before device errors are applied. These
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conductances are in normalized units in the range (1/on off ratio, 1). The user can apply an
arbitrarily complex error function to this conductance matrix.

Three custom models of device error are provided with CrossSim, based on published literature.
These are shown in Fig. 7.3. Consider, for example, the error characteristics of the phase change
memory (PCM) device in Joshi et al. [13], which is shown in the center plot. The properties of
this device can be considered a mixture of state-proportional and state-independent: like state-
proportional error, the error increases with conductance, but it does not approach zero error at zero
conductance. The effect of this type of error profile cannot be accurately modeled by a generic error
model.

To define a custom device programming error model, perform the following steps:
1. In inference config.py, set the parameter error model to a new keyword that describes

the device being simulated (e.g. "HfO2")
2. Open weight error device custom.py

3. Add a new if clause inside the function applyCustomProgrammingError that checks that
the value of error model matches the keyword entered in the first step.

4. Inside the if clause, write a custom error function that modifies the input (unperturbed)
conductance matrix input then return the modified matrix.

The devices in Fig. 7.3 are included as examples in the file, and can be used as a template
for custom device error profiles added by the user. Each example uses an analytical fit to the data
to interpolate the error between the experimentally measured points. In addition to PCM, the file
contains two other example programming error profiles, for a SONOS charge trapping memory
device using data from Xiao et al. [21] and an HfO2 ReRAM device using data from Milo et al. [15].

The conductance matrix passed into applyCustomProgrammingError is in normalized con-
ductance units from (On/Off ratio)−1 to 1. To apply the error in the PCM case, these values are first
de-normalized (scaled and shifted) to lie in the range (Gmin,Gmax) of the PCM device. Then the
error matrix is computed based on this conductance matrix. The error matrix is used as a matrix of
standard deviations for the normally distributed device programming errors.

7.3 Conductance drift

Drift refers to the change in a device’s programmed conductance over time, after programming.
Physically, this can occur due to structural relaxation within the device (for PCM, ReRAM) or
leakage of stored charge from the device (for flash). These time-dependent properties are important
for storage-class memory as they determine how long a bit of data can be retained. For analog
inference applications these properties are just as (if not more) important since small changes in the
device state can lead to large MVM errors when these changes are aggregated over many devices.

Drift can be enabled by setting the parameter t drift to a non-zero value, in units of days. The
drift model is selected using the drift model parameter (string). Since drift behavior is highly
technology-dependent, there is no generic drift model in CrossSim. Instead, two drift models are
provided that correspond to specific device technologies: the 40nm analog SONOS devices in Xiao
et al. [21] and the PCM devices in Joshi et al. [13]. These can be found in the file:

/cross_sim/cross_sim/xbar_simulator/parameters/custom_device/

weight_drift_device_custom.py
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The function applyDriftModel() in this file will be called each time a resistive memory array is
created to map a weight matrix, fully or partially. The argument input to this function contains
the conductance values for the array before device errors are applied. These conductances are in
normalized units in the range (1/on off ratio, 1). The user can apply an arbitrarily complex
function to this conductance matrix that represents the effects of conductance drift and time-
dependent random conductance variability.

The SONOS drift model is selected by setting drift model="SONOS interpolate". This
model includes both (1) the deterministic change over time of the programmed conductance G(t)
and (2) the change over time of the conductance error ∆G(t). The first effect accounts for the average
behavior of a device that is programmed to a certain conductance, while the second effect accounts
for stochasticity of the drift process as well as device-to-device variations. The model is based on
empirically measured conductances up to five days after programming; it does not extrapolate well
to significantly longer timescales.

The PCM drift model is selected by setting drift model="PCM Joshi". This uses the analyti-
cal drift model in Joshi et al. [13], where the conductance decays as a power law over time. Note
that in their modeled time-dependent accuracy results, Joshi et al. applied a drift compensation
procedure, which is not included in CrossSim.

To define a custom drift model, perform the following steps, which are similar to the custom
programming error model:

1. In inference config.py, set the parameter drift model to a new keyword that describes
the device being simulated (e.g. "HfO2")

2. Open weight drift device custom.py

3. Add a new if clause inside the function applyDriftModel that checks that the value of
drift model matches the keyword entered in the first step.

4. Inside the if clause, write a custom error function that modifies the input (unperturbed)
conductance matrix input then return the modified matrix.

The custom model can be interpolation based, like the SONOS model, or can be an analytical
expression of conductance and time.

Note that if drift is enabled (t drift is larger than zero), the custom device programming error
model will be ignored. This is because a time-dependent error is assumed to be part of the drift
model, so disabling the custom programming error model avoids applying the errors twice (once at
t = 0 and again at t = tdrift). However, the generic error model (error model = "alpha") is not
automatically disabled when simulating drift. The programming error is applied prior to applying
drift.

7.4 Conductance read noise

Read noise is another type of perturbation applied to the device conductances that represent the
weights. Read noise is applied after, and on top of, device programming errors and/or drift as shown
in Fig. 7.1. The main distinction between read noise and programming errors and drift is that
random read noise is re-sampled on every MVM, rather than only at the core initialization stage.
Thus, read noise is dynamic rather than static across different input images as well as different
MVMs within a convolution layer. The effect of read noise is not cumulative, i.e. read noise is not
re-applied on a conductance matrix that was previously perturbed by read noise.

For a given MVM, read noise is applied in a similar manner to programming errors: for every
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conductance, a random number is sampled from a normal distribution and added to the original
conductance. Since the noise must be re-sampled for every MVM during inference, enabling read
noise can significantly increase the simulation time.

7.4.1 Generic conductance read noise model

Similarly to programming errors, a generic read noise option is avaialable that can apply ei-
ther state-independent or state-proportional read noise. The generic option is selected by setting
noise model="alpha". To simulate state-independent noise, set proportional noise=False.
To simulate state-proportional noise, set proportional noise=True. Then, set alpha noise to
the desired value of αind or αprop, which are defined in exactly the same way as in Section 7.2.1 for
generic programming errors.

Notably, while the effect of read noise on end-to-end accuracy is qualitatively similar to the
generic programming errors in Section 7.2.1, the magnitude of the effect is not the same, due to the
different re-sampling properties. This is true especially if input bit slicing is enabled (Section 8.2),
where read noise is re-sampled for every input bit during an MVM, and there is opportunity for the
random noise at different input bits to cancel when the partial results are aggregated.

7.4.2 Custom conductance read noise model

The read noise standard deviation vs. conductance properties of a real device (which does not have
purely state-independent or state-proportional noise) can be specified by the user by modifying the
following file:

/cross_sim/cross_sim/xbar_simulator/parameters/custom_device/

weight_readnoise_device_custom.py

Rather than directly applying a perturbation to the weight matrix, a matrix of noise standard
deviations is computed based on the values of the conductances in the matrix, after programming
errors and drift have been applied. Inside the function setDeviceReadNoise(), the user supplies
the function that computes this standard deviation matrix. This function will be called during set-up
for each resistive array in the system. Then, during the course of the inference simulation, read noise
is sampled from normal distributions with the computed conductance-dependent standard deviations
on every MVM.

An example of a custom read noise characteristic is provided in the above file, for a fully
hypothetical device (noise model="parabolic"). The hypothetical device has a noise standard
deviation that varies as a quadratic function of the conductance.
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Chapter 8

Array parameters

This section describes the parameterization of the MVM array and the way that it is driven, indepen-
dent of the memory device technology used.

8.1 Array size and matrix partitioning

It may not always be feasible to fit the full weight matrix onto a single MVM array, due to practical
size limitations on the memory array. For example, larger memory arrays may require better select
devices to program reliably. Also, in a large memory array, device error accumulation and parasitic
resistance have a larger impact on the accuracy of an MVM.

CrossSim supports partitioning the weight matrix onto multiple MVM arrays, along the column
dimension, i.e. the dimension along which cell currents are summed to form a dot product. The
input vector is also partitioned. The maximum number of rows per partition is set by the parameter
NrowsMax. This partitioning is shown in Fig. 8.1. A single partition of the matrix can still correspond
to multiple MVM arrays representing different weight bit slices and/or weight polarities for that
matrix partition. Partitioning is not currently supported along the row dimension. Device errors do
not accumulate along the rows, though in some systems parasitic voltage drops can accumulate (see
Section 8.3).

Partitioning of the N1 rows of the weight matrix is done according to the following rules. If
digital bias addition is disabled, N1 includes a bias row.

• If N1 is a multiple of NrowsMax, then the number of rows in each array is equal to exactly
NrowsMax.

• If N1 is not a multiple of NrowsMax, then the N1 rows of the original matrix will be evenly
distributed across the constituent arrays, where each array has at most NrowsMax rows.

– If N1 is not divisible by the number of partitions, then the partitions may differ slightly
in the number of rows.

• If N1 is less than or equal to NrowsMax, the array is assumed to have N1 rows.
The dot products computed in each partition are separately digitized by an ADC as shown in

Fig. 8.1. These digitized results are then added to form the full dot product. Different partitions
within the same weight bit slice share the same ADC limits.
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Figure 8.1: Partitioning of a large weight matrix onto multiple MVM arrays.

8.2 Input bit slicing

There are two general methods to drive an MVM array with a vector of multi-bit inputs x⃗. The first
option is to use a digital-to-analog converter (DAC) to represent the value of an element xi as a
voltage. This voltage then drives the row, and cell currents are computed by Ohm’s law. This option
can be enabled by setting the parameter input bitslicing=False. This method can be energy-
and area-inefficient, due to the complexity of having a multi-bit DAC for every row of the array.

The second option is to apply the bits of x⃗ one at a time to the array, then aggregating the
MVM results from the different input bits: this is called input bit slicing. For an input with Bin
bits of resolution, this method involves Bin sequential analog MVM operations to compute the
full matrix-vector product. This is done for every weight bit slice, and for every matrix partition.
Input bit slicing can be enabled by setting input bitslicing=True. Note that this option can
significantly increase simulation time, since a separate MVM simulation is required for each input
bit.

Fig. 8.2 shows the circuit implementations of the two methods. For input bit slicing, no DAC is
needed, and one bit of x⃗ is selected by a digital multiplexer. There are also hybrid solutions that use
an intermediate-resolution DAC [6], but this is not currently supported.

If no device- or array-level non-idealities are included, the two options yield the same result.
Otherwise, they can yield different results for a number of reasons. If read noise is enabled, the
conductance noise is re-sampled for each input bit. If parasitic resistance is enabled, the parasitic
voltage drops will be different in the two cases since the voltage driving the rows will be different.
For input bit slicing, the effect of parasitic resistance can vary dramatically among the input bits,
since the higher-significance bits tend to be more sparse [16, 23].

The resolution of the input x⃗ is set by the parameter dac bits, which will be explained in more
detail in Chapter 9.

When using input bit slicing, the intermediate MVM result for each input bit is aggregated
according to:

y⃗ =
Bin−1

∑
k=0

2k (Wx⃗k) (8.1)
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Figure 8.2: Two supported methods for applying a multi-bit input to an array (8-bit input shown, for
illustration).

where Bin is the number of bits in x⃗ and we have ignored weight bit slicing and matrix partitioning
here for simplicity. This weighted sum can be computed digitally using shift-and-add operations
applied to the intermediate MVM results (in parentheses). In this case, the intermediate MVM
results are digitized. This option is set with the parameter ADC per ibit=True.

Alternatively, it is possible to compute this weighted sum in the analog domain using specialized
analog capacitive shift-and-add circuits [4]. In this case, only the left-hand side of the equation
above is digitized, and only a single ADC operation is needed for all Bin input bits. This option is set
with the parameter ADC per ibit=False. Setting the ADC range for these cases will be described
in more detail in Chapter 9.

8.3 Parasitic resistance

The resistance of the array’s metal interconnects induces parasitic IR voltage drops along the
columns and/or rows of the array. These voltage drops distort the voltage seen by the memory cells,
and induces errors in the cell currents that are spatially non-uniform and highly dependent on both
the weight matrix values and the input vector. The effect grows super-linearly with array size, as
each new row contributes both a line resistance and a source of current. Parasitic resistance is one of
the main factors that limits the size of an MVM array.

CrossSim evaluates the effect of the parasitic voltage drops using a built-in circuit simulator,
optimized for array MVM simulations. The parasitic resistance model is incorporated into each
analog MVM simulation. It is separately modeled for all input bits, all weight bit slices, and all
array partitions.

The effect of parasitic resistance on MVM accuracy depends strongly on the size of the parasitic
resistance relative to the device resistance, the weight mapping method (Chapter 6), whether or not
input bit slicing is used (Section 8.2), the memory cell design, and the array electrical topology (see
below).
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Table 8.1: Electrical topology parameters for parasitic resistance simulation
Topology noRowParasitics style interleaved

posneg

input

bitslicing

A False "balanced" or
"offset

Ignored True or False

B True "balanced" or
"offset

False True

C True "balanced" True True

8.3.1 Specifying parasitic resistance

The resistance along a metal line is modeled by inserting a resistor Rp between two cells of the array,
along a column and/or along a row (see below). This resistance is specified using the parameter Rp.
If Rp=0, the parasitic resistance model is disabled.

The parasitic resistance Rp is specified using normalized units, relative to the minimum resistance
Rmin of a memory device. For example, if a cell with Rmin = 100 kΩ is used, a value of Rp = 10−5

represents a resistance of 1Ω between every two cells in the array. If parasitic resistance is modeled
on both the rows and columns, the simulation assumes a square unit cell, such that Rp has the same
value along both the rows and columns.

8.3.2 Array electrical topologies

The effect of parasitic resistance depends on the electrical topology of the memory array. CrossSim
currently supports three different electrical topologies, shown in Fig. 8.3(a)-(c). In each topology, a
1T1R memory cell is assumed, where the resistive device is in series with a select transistor. Table
8.1 shows the parameter settings in the inference config file to select each topology. If Rp > 0 and
the settings do not match one of the options in Table 8.1, an error will be thrown.

CNN inference requires a large number of MVMs: for instance, ResNet50 for ImageNet requires
∼ 106 analog MVMs per input image (with input bit slicing enabled). Thus, to feasibly simulate
full neural network inference while accounting for parasitic resistance effects, the three topologies
in Fig. 8.3(a)-(c) are simulated using the approximate circuits in Fig. 8.3(d)-(f), respectively. The
three topologies and their approximations are described below.

Topology A

In Topology A, shown in Fig. 8.3(a), a common gate bias turns on all the select transistors in
the array during an MVM. The select transistor connects the memory device to its corresponding
column. The input voltage is directly applied to the memory cell, and thus the cell currents are
supplied from the same line that carries the input signal. This means that parasitic voltage drops
are present across both the rows and columns of the array. This topology is commonly used with
ReRAM or PCM devices [13, 14, 25].

For computational tractability, CrossSim simulates this topology using the approximate circuit
in Fig. 8.3(d). This approximation assumes: (1) the memory devices behave as linear resistors under
small-signal voltage fluctuations, and (2) the select devices are fully transparent (ideal short circuits)
during an MVM. The second assumption is valid if the select transistor has a much lower resistance
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Figure 8.3: (a)–(c) Three array topologies supported by CrossSim, shown for differential cells.
Topologies B and C assume input bit slicing is used, such that the input voltages are binary. Black
resistors denote memory devices, red resistors Rp are parasitic. For offset subtraction, only the G+

cells are used. Topology C is only relevant for differential cells. (d)–(f) Approximate circuit models
for the three topologies using linear resistors and ideal select devices.

than the memory device when on. This circuit approximation also means topology A can be used to
model 1R arrays with no select device.

This setting can be used whether or not input bit slicing is enabled. It is also compatible with
both differential cells and offset subtraction.

Topology B

In Topology B, shown in Fig. 8.3(b), the input is applied to the gate of the select transistor, which is
used as a switch that connects or disconnects the resistive device to a fixed voltage supply. Since the
transistor is used as a switch, the input voltage must be binary: i.e. input bit slicing is assumed. This
topology is more commonly used with variable-resistance flash memory devices [2, 8, 10, 21], but
can also be used with other resistive memory technologies.

The advantage of this topology is that because the transistor gates draw a negligible current, the
input signals are not distorted as they travel along the rows to a given cell. Thus, parasitic resistance
along the rows do not need to be modeled. We additionally assume that the voltage supply (VD),
which is shared by all cells, can be sourced from a low-resistance distribution network. Under this
assumption, only the parasitic resistance of the columns, where the cell currents are summed, is
relevant. Thus, the approximate circuit in Fig. 8.3(e), which includes parasitic resistance only on
the columns, is used. The select devices are assumed to behave as ideal short circuits when the input
bit is high, and as ideal open circuits when the input bit is low. Thus, for a row with a low input bit,
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all cells connected to the corresponding row draw zero current (this is not true for Topology A).
This topology is compatible with both differential cells and offset subtraction, but requires input

bit slicing.

Topology C

Topology C, shown in Fig. 8.3(c), is a modification of Topology B specifically for the case where
differential cells are used. The cells for the positive and negative weights are interleaved, and each
pair is connected to the same column. The positive cell (connected to a positive supply) adds current
the column while the negative cell (connected to a negative supply) subtracts current. Thus, the
current subtraction needed to implement differential cells occurs within each pair of cells, rather
than at the periphery of the array. Currents of different polarity along the bit line can cancel to
reduce voltage drops. The sensitivity of this design to parasitic resistance has been shown to be
similar to that of Topology B [23]. Fig. 8.3(f) shows the approximate circuit used for simulation.

This topology is compatible only with differential cells, and requires input bit slicing.

8.3.3 Parasitic circuit simulation performance

To simulate the circuits in Fig. 8.3(d)-(f), the currents along the rows and columns are first
computed assuming zero wire resistance. The voltage drop across each parasitic resistance is then
computed from these currents, and the resulting node voltages along the rows and columns are
used to modify the values of the cell currents. These cell currents are subsequently used to re-
compute the line parasitic voltage drops iteratively. The simulation is considered to have converged
when the worst-case change in node voltage ∆V between iterations falls below 0.0002VD. This
threshold was determined empirically based on the stability of the end-to-end inference accuracy of
ImageNet neural networks. This threshold (0.0002) can be increased to reduce computation time, at
a possible cost to simulation fidelity. This can be done by changing the internal simulation parameter
params.numeric params.Verr th mvm in inference util/inference net.py.

The linearizing simplifications in the approximate circuits enable the MVMs to be computed
using fast matrix operations. A large performance improvement is possible with GPU acceleration.
Nonetheless, including the parasitic resistance circuit model (Rp > 0) incurs a large performance
penalty compared to the case without parasitic resistance. The performance penalty can increase
sharply as larger values of Rp are used, which increases the parasitic voltage drops and consequently,
increases the number of iterations to convergence in the circuit simulation. The GPU performance
of parasitic resistance simulations is discussed in Section 10.3.4.

8.4 Column current limits

CrossSim provides an option to artificially limit the amount of current at the bottom of the column.
This is a simple model that first calculates the sum of all the cell currents at the bottom of the column,
then clips it to the specified maximum if the sum is too large. This clipping is applied separately to
the positive and negative columns for differential cells, before the currents are subtracted.

This is enabled by setting the parameters Icol max and Icell max to non-zero values, repre-
senting the current (in Amps) of the maximum allowable column current and the maximum cell
current.
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Chapter 9

ADC and activation quantization

The analog-to-digital conversion process is an important source of error in analog neural network
computation. In CrossSim, an ADC is parameterized by two main quantities: its resolution (bits)
and its range. Fig. 9.1(a) shows how these two values are used to convert an analog signal to a digital
level. The ADC introduces two types of error: quantization and clipping. Quantization refers to the
information loss induced by converting a continuous-valued signal to a discrete level. Clipping error
is induced when the signal lies outside the ADC range. Each weight bit slice and matrix partition
has a separate ADC, and the aggregation of results from different partitions or weight bit slices is
assumed to occur error-free in the digital domain. Aggregation of results from different input bits
can be carried out in the analog or digital domain as discussed in Section 8.2.

In addition to ADC quantization, activation values that are the inputs to MVMs can also be
quantized, as shown in Fig. 9.1(b). This quantization step is done in the same way as ADC
quantization, but is generally not redundant with the ADC, since the results from multiple arrays
may be summed and an activation function may be applied before this quantization step. Therefore,
the value range used for this step is often different from that used for the preceding ADC. In the
code, the activation quantization parameters refer to a DAC (e.g. dac bits, dac ranges) but this
quantization step is not necessarily performed by a DAC, and can be done via digital arithmetic with
digital inputs and digital outputs.

9.1 Setting the ADC and activation resolution

The ADC and activation resolution can be set by the parameters adc bits and dac bits, respec-
tively, in inference config.py. These are specified as the number of bits B where the number of
quantization levels is 2B. For either case, a value of zero disables the corresponding quantization
step.

By default, the resolution set by adc bits and dac bits is applied to all layers in the neural
network. It is possible to separately set the quantization resolution for each layer, by using the
vectors adc bits vec and dac bits bits in run inference.py. These are 1×Nlayers vectors
where Nlayers is the number of MVM layers in the neural network (convolution or fully-connected),
and an index of 0 refers to the first MVM layer. As shown in Fig. 9.1(b), the ith element of dac bits

specifies the resolution of the ith layer’s input activations.
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Figure 9.1: (a) Top - distribution of analog values before ADC, Bottom - distribution of digitized
ADC outputs, with quantization and clipping errors (4 bits shown as an example). (b) Quantization
is applied to each array’s analog outputs by the ADCs, and to the digital activation values prior to
the next layer. If using differential cells, the subtraction is done in analog before the ADC.

9.2 ADC and activation quantization behavior

In CrossSim, the quantization process for both the ADC and the activations is currently assumed to
be deterministic. The quantization levels are always assumed to be equally spaced. Any signal that
exceeds the maximum level in the range is clipped to that level, and vice versa for the minimum.

9.2.1 ADC behavior

The following summarizes the behavior of the ADC model under different hardware parameteriza-
tions:

• If using differential cells, the subtraction is done in analog before the ADC.
• If a matrix is partitioned spatially over multiple arrays, the results from each partition are

digitized by an ADC, then these quantized outputs are summed as shown in Fig. 9.1(b).
• If weight bit slicing is used, results from each weight bit slice are digitized by an ADC, then

accumulated via shift-and-add.
• If input bit slicing is used, there are two options for where digitization occurs:

1. If ADC per ibit is False, the shift-and-add accumulation of results from different
input bits is done in analog, then the final result is digitized.

2. If ADC per ibit is True, the ADC is separately applied to the results from each input
bit, then these digitized results are accumulated via shift-and-add.

9.2.2 Activation quantization and input bit slicing

The activation quantization behavior is less dependent on hardware parameters, with the exception
of input bit slicing. If input bit slicing is enabled, the dac bits parameter sets the number of
bit-wise MVM simulations that are needed per full-precision MVM.

• If the input activations are strictly non-negative (e.g. following a ReLU activation), all of the
activation bits are magnitude bits and the number of bit-wise MVMs performed is equal to
dac bits.

46



• If the minimum of the activation range is negative, then one of the activation bits is treated as
a sign bit. In this case, it is assumed that three input voltages are available: a positive voltage,
a negative voltage of the same magnitude, and zero. This allows both positive and negative
inputs to be applied simultaneously for each magnitude bit, and thus only dac bits - 1

bit-wise MVMs are needed (the number of magnitude bits). The provided activation range for
the layer is converted to a range that is symmetric about zero.

9.3 Setting the ADC ranges

The range of the ADC is specified by the values of the minimum and maximum quantization levels.
Any input that falls outside this range are clipped to the limits. These ranges are static and do not
change during inference. This range is generally, but not always, specified as a (min,max) tuple
and is set separately for each of the layers in the neural network. This can be done using one of
several global options using the parameter adc range option, explained in the subsections below.
If adc bits is set to zero, the ADC range option is not used.

The scope of the ADC ranges is summarized by the following:
• Different layers use different ADC ranges
• Different weight bit slices use different ADC ranges
• Different matrix partitions within the same weight bit slice use the same ADC ranges
• If input bit slicing is enabled and ADC per ibit=True, different input bits within the same

weight bit slice use the same ADC ranges
• Different columns of the same array (i.e. same layer and same weight bit slice) use the same

ADC ranges

9.3.1 Calibrated ADC range

The calibrated ADC range option is enabled by setting adc range option="calibrated" in the
inference configuration file.

In this mode, the ADC ranges for each layer and for each weight bit slice within a layer are
loaded from files stored in the /adc/adc limits/ folder. These files are NumPy arrays (.npy)
containing parameters used to specify the range, summarized below. The specific ADC ranges stored
in these files are optimized to minimize both quantization and clipping errors, and ideally produce
the highest accuracy achievable at a given ADC resolution. If the range is small, the separation
between levels is small and the quantization errors will be smaller; however, the clipping errors
will be larger. If the range is large, quantization errors will be larger but clipping errors will be
smaller. Fig. 9.2(b) illustrates a roughly optimal choice of ADC range at two resolutions. These
same considerations have been applied for post-training quantization of neural networks to be run
digitally using low-precision computations [12].

Different calibrated ADC ranges are needed whenever there is a significant difference in the
ADC input value distributions. This is why different layers and different weight bit slices within a
layer have unique ADC ranges1. This also means that for a given neural network, a different set of

1The only exception to this rule is that different input bits within the same layer and weight bit slice will always use the
same ADC limits (when ADC per ibit=True), even though the ADC input distributions can vary significantly between
the input bits. This is due to the practical difficulty of dynamically changing the ADC range with the input bit position.
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calibrated ADC ranges is needed for all layers when any of the following hardware parameters are
changed:

1. Number of weight bit slices (Nslices)
2. Maximum number of rows per array (NrowsMax)
3. Negative number representation (style)
4. Whether the ADC is applied after every input bit with input bit slicing (ADC per ibit)
Determining the calibrated ADC ranges is not straightforward, and must be done based on

the statistical distributions of the input values for each ADC in the entire system. These statistics
must first be gathered by running profiling simulations, then the range is found by an optimization
procedure. This is described in Section 9.4.

Calibrated ADC ranges are provided for a variety of hardware parameters for several of
the provided neural networks, but these provided ranges do not cover all possible values of
the hardware parameters above. Please see the function load adc activation ranges() in
/inference/inference util/CNN setup.py to see which combinations of neural networks
and hardware parameters have provided ADC ranges. Notably the ResNet50v-1.5 network has the
largest, though not complete, library of provided ADC ranges with flexibility in all four parameters
above. If calibrated ranges are not available for a desired neural network and/or hardware settings, a
ValueError will be raised inside load adc activation ranges(). In this case, the calibrated
ADC ranges must first be generated, stored in .npy files, then added to this function. CrossSim
provides tools to find these calibrated ADC ranges, described in Section 9.4. Alternatively, one of
the parameter-less ADC range options (see Sections 9.3.2 and 9.3.3) can be used.

Further details are provided below on how the calibrated range parameters are used.

Unsliced weights

For unsliced weights, the neural network’s ADC ranges are provided in a Nlayers ×2 array, where for
each layer a tuple of floating-point values (ymin,ADC,ymax,ADC) specifies the values of the minimum
and maximum ADC levels. These are in algorithmic units, i.e. raw activation values, not normalized
or converted to hardware units. CrossSim internally converts these to units usable by the ADC
model. Here we introduce the notation y to denote array MVM results in analog form, i.e. ADC
inputs.

Bit-sliced weights

For bit-sliced weights, the neural network’s ADC ranges are provided in a Nlayers ×Nslices array. For
a given layer and weight bit slice, the ADC range is specified by a single integer C. The ADC limits
for the ith bit slice in a given layer are then given by:

ymin,ADC,i =−ymax ×2−Ci or 0 (9.1)

ymax,ADC,i = ymax ×2−Ci (9.2)

where ymax is the maximum possible value of an array MVM result that is mostly a function of
array size and not the distributions of weight or activation values, i.e. it is the largest possible
value of y assuming every input and weight is the largest possible. If the ADC inputs are strictly
non-negative, then the ADC minimum is automatically set to 0. This can occur if (1) the layer only
accepts non-negative inputs and (2) offset subtraction is used.
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Figure 9.2: (a) Distribution of analog values before the ADC, (b) Distribution after ADC with
calibrated ranges, (c) Distribution after ADC with max ranges, (d) Distribution after ADC with
granular ranges, for two resolution settings.

The value of ymax is the same for all slices in a layer, but Ci can differ for different bit slices.
Since Ci must be an integer, and the ADC minimum and maximum are not controlled separately,
the definition above is more restrictive in the possible ADC ranges than for unsliced weights. This
is to accommodate the practical implementation of weight bit slicing, which uses shift-and-add
operations to combine the results from different bit slices. For this type of accumulation to work,
the ADC ranges can only differ by a power of 2; otherwise, results from different bit slices must be
scaled by a much more complicated arithmetic unit before being added together. With the definition
above, shift-and-add accumulation is still possible; only the number of shift bits between slices may
change based on the calibrated ADC ranges. As an example, consider an 8-bit weight divided into
two 4-bit slices (i = 0 is the low slice, i = 1 is the high slice). If C0 =C1, then the least significant
slice result is shifted left 4 bits before being added to the most significant slice results. If C0 =C1+2,
then the least significant slice result is shifted left by 2 bits instead.

Range zero-centering

Since many statistical ADC input distributions are symmetric about zero, it is often very important
to have an ADC level at exactly the value of zero. This avoids any potential systematic quantization
errors. For cases without weight bit slicing, this is done by offsetting the provided calibrated ADC
range such that a level in the middle of the range is placed exactly at zero. For cases with weight
bit slicing, this is guaranteed by the ADC limits given by Equation (9.1) and (9.2). If ymin,ADC < 0,
then the number of quantization levels is reduced by one such that it is odd, i.e. there are 2B −1
levels. This ensures a symmetric range about zero with a level at exactly zero.
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9.3.2 Max ADC range

The max ADC range option is enabled by setting adc range option="max" in the inference
configuration file.

This setting sets every array’s ADC limits to the minimum and maximum possible values of the
array’s MVM output. It requires no calibration nor any external files to set the ADC ranges. For
every array, the range is set according to:

ymin,ADC =−ymax or 0 (9.3)

ymax,ADC = ymax (9.4)

where ymax is the maximum possible value of an array MVM result that is mostly a function of array
size and not the distributions of weight or activation values, i.e. it is the largest possible value of y
assuming every input and weight is the largest possible. This setting is illustrated in Fig. 9.2(c). If
the ADC inputs are strictly non-negative, then the ADC minimum is automatically set to 0. This
can occur if (1) the layer only accepts non-negative inputs and (2) offset subtraction is used. The
ADC range is independent of the chosen resolution. The separation between ADC levels decreases
exponentially with the bits of resolution.

The benefit of the max ADC range setting is that it is simpler to run: it allows an ADC simulation
without having to calibrate the ranges to a specific neural network and hardware settings. Another
benefit of this setting is that it avoids ADC clipping errors, since the limits are set to the most
extreme values accessible.

The disadvantage of this method is that it has high quantization errors, due to the large spacing
between levels. It often produces a much lower accuracy than calibrated ADC ranges for a given
ADC resolution. This is because in practice, the extreme ADC input values (close to ±ymax) are very
rarely seen because both the weights and activations in a neural network have value distributions
that are heavily skewed toward zero [22]. This is illustrated by comparing Fig. 9.2(c) to Fig. 9.2(b).
The max ADC range setting will generally only produce a high accuracy when the ADC resolution
is very high, possibly unrealistically high.

9.3.3 Granular ADC range

The granular ADC range option is enabled by setting adc range option="granular" in the
inference configuration file.

Like the max setting, this option sets the ADC ranges without requiring any calibration, but takes
the opposite approach. Rather than using the maximum possible output value ymax, the granular
option is based on the minimum possible separation between analog outputs δy. This minimum
separation is well-defined under the assumption that the array MVM introduces zero errors or noise,
which will not be true in practice. Nonetheless, it still provides a calibration-free method to set the
ADC ranges since δy is only a function of the array size and weight quantization. The separation
between ADC levels is set to a fixed value of δy regardless of resolution as shown in Fig. 9.2(d).
The range of the ADC increases exponentially with the bits of resolution.

An equivalent way to define the minimum separation δy is the minimum possible non-zero
MVM output when the array is free of errors. For this value to be well-defined, CrossSim currently
requires:

1. Weight quantization is enabled (weight bits > 0)
2. Activation quantization is enabled (dac bits > 0)
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3. Input bit slicing is enabled (input bit slicing = True)
4. ADC is applied after every input bit (ADC per ibit = True)
Like the max setting, the benefit of the granular setting is that it allows an ADC simulation to

be run without having to calibrate the ranges to a specific neural network and hardware settings.
In the theoretical case where the array introduces zero analog errors, this setting also eliminates
quantization errors. However, since the range depends directly on resolution, an insufficient
resolution leads to large clipping errors, as shown in Fig. 9.2(d).

The ADC resolution that eliminates all clipping errors can be calculated (assuming 1-bit input
slices):

BADC = BW + ⌈log2 N⌉ (9.5)

where BW is the number of weight bits and N is the number of rows activated in an MVM.
Many analog accelerators published in the literature adopt the convention of setting the ADC

level separation to δy and setting the ADC resolution to BADC above [3, 5, 19, 24]. This has
been called the full-precision guarantee since it eliminates both quantization errors and clipping
errors [22]. By using the granular option and setting the ADC resolution to the value given above
(with N set to NrowsMax, or the otherwise largest array in the system), one can confirm using
CrossSim that ideal accuracy can be achieved on a neural network when all other analog errors are
disabled [22].

There are, however, two caveats to using the full-precision guarantee. First, “full precision” is
only meaningful under the ideal condition that there are no analog errors. If the accumulated effect
of device programming errors, read noise, drift, or parasitic resistance on a column is larger than
the separation between ADC levels, then quantization errors may be small in comparison to the
analog errors. Thus, setting the level separation to δy would not be the optimal choice. Secondly, in
general near-ideal accuracy can be obtained at a lower ADC resolution than BADC bits (given above)
by using calibrated ranges, even if this choice does not theoretically guarantee zero quantization or
clipping errors. This is especially true if differential cells are used, rather than offset subtraction [22].

9.4 Calibrating the ADC ranges

Fig. 9.3 shows the workflow for calibrating the ADC ranges for a given neural network and hardware
parameters. A new ADC calibration should be performed each time one or more of the hardware
parameters listed in Section 9.3.1 changes, and the ADC ranges corresponding to this case are not
provided with CrossSim. The calibration consists of two steps: first, a profiling inference simulation
is performed with ADCs disabled and the ADC input values for all arrays are collected. Second, the
statistics of the collected ADC input values is used to find the optimal ADC range that minimizes
both quantization and clipping errors. After these ranges are found, they are saved to .npy files and
can be subsequently loaded into inference simulations.

ADC input profiling

The first step to find the calibrated ADC ranges is to collect the statistics on the ADC inputs of every
array. This is done using a profiling simulation, which differs from a normal inference simulation in
four main ways:

1. The ADC is disabled, i.e. the ADC is an identity function
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Figure 9.3: Workflow for calibrating the ADC ranges for a given neural network and hardware
parameters.

2. During the simulation, all ADC inputs are saved (across all layers, all slices, all input images,
and all MVMs)

3. A special dataset, called the calibration set, is used that should not be the same as the validation
or test dataset (see Section 9.4.1)

4. The parameters x par and y par are forced to equal 1 to conserve memory (see Section 10.2)
The hardware configuration used for profiling should be specified in inference config.py, as
before. The parameter adc bits must be set to 0, but all other hardware settings should match the
hardware settings that would be used after the calibrated ADC ranges are found. To start a profiling
simulation, run the following command from the inference directory (after modifying the file as
described below):

python run_inference_profiling.py

Currently, all ADC inputs seen during the profiling simulation are stored in memory, then saved
to disk at the end of the simulation. Please note that depending on the dataset and neural network,
the output files from an ADC profiling run can consume a large amount of memory and disk
space. If memory runs out before the profiling simulation ends, it may be necessary to break up
the calibration set into smaller chunks. The number of ADC inputs depends on the total number of
ADC conversions in the system. For a given layer, the number of ADC inputs that must be saved
increases proportionally with:

• The size of the calibration set
• The total number of outputs from the layer
• The number of matrix partitions
• The number of weight bit slices
• If ADC per ibit=True, the number of input activation bits (set by dac bits)
ADC input profiling is enabled by setting profile ADC inputs=True inside the script

run inference profiling.py. The ADC inputs are saved to a collection of .npy files in-
side the directory specified by profiling folder, which can be set. By default, a new directory
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Table 9.1: ADC input profiling outputs
Weight bit slicing? Input bit slicing? Number of output .npy files

No No One file per layer
No Yes One file per layer, per input bit†

Yes No One file per layer, per weight bit slice
Yes Yes One file per layer, per weight bit slice

† Note that all input bits share the same ADC limits, so there is strictly speaking no need to resolve the ADC inputs
for different input bits. However, the input bits are resolved for the user’s interest, since different input bits can have
significantly different ADC input distributions.

is created inside /adc/adc dac inputs/ with a name that matches the hardware settings in
inference config.py. How many files are saved in this directory depends on the hardware
settings: see Table 9.1. Each file contains a 1D vector of ADC inputs that all share the same ADC
range.

ReLU-aware ADC input profiling

When a ReLU activation is applied directly after the ADC, the lower bound of the ReLU can be
used to more optimally set the lower limit of the preceding ADC. Any input to the ReLU function
that falls below zero is clipped to zero. Any ADC input that eventually meets that outcome does
not need to be profiled, since the information in that ADC input would be lost regardless of the
ADC limits. Typically, a ReLU is applied to the sum of the ADC output and a known bias value b.
Therefore, any ADC input y that satisfies y+b < 0 does not need to be profiled (note that the value
of b used is different for different columns).

This selective discarding of ADC inputs can be enabled by setting profile adc biased=True

in run inference profiling.py. This ultimately helps compress the ADC range in such a way
that quantization errors are reduced without increasing clipping errors.

In several situations, the selective discarding of ADC inputs cannot be applied, and the option is
automatically disabled on a layer-by-layer basis:

• The layer’s weight matrix is partitioned. Since the result from the other partitions is unknown,
it is impossible to predict whether a given ADC input will be clipped by the ReLU.

• Weight bit slicing is used. Since the result from the other slices is unknown, it is impossible to
predict whether a given ADC input will be clipped by the ReLU.

• Input bit slicing is used and ADC per ibit=True. Since the result from the other input bits is
unknown, it is impossible to predict whether a given ADC input will be clipped by the ReLU.

• The activation is a ReLU, but another neural network operation precedes the ReLU (e.g.
element-wise addition of another layer’s output).

• The activation is not a ReLU.
In summary, any time there is a digital operation between the ADC and the ReLU other than bias
addition, this technique cannot be used.

9.4.1 Calibration dataset

The data used to profile the ADC inputs and calibrate the ADC ranges should ideally not have overlap
with the dataset used to validate or test the neural network accuracy. Typically, this calibration set
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Optimize range to minimize the error:

def error(y, range, Nbits):

yq = clip(y, range)

yq = quantize(yq, Nbits)

error = L1_norm(y – yq)
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Optimized ADC rangeADC Nbits

ADC range

(initial guess)

Figure 9.4: Simplified outline of the algorithm used to optimize ADC ranges without weight bit
slicing.

can be much smaller than the validation or training sets. For the provided datasets, the calibration
option can be enabled by setting calibration=True in run inference profiling.py. The
behavior of this parameter depends on the dataset.

• For MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100, a calibration set is created by
randomly sampling ntest images from the training set, where ntest is specified in the
configuration file. Note that a different set of calibration images will be selected each time a
profiling simulation is started.

• For ImageNet, the pre-processed MLPerf calibration dataset is loaded, which is static and
stored in a separate file. See Section 4.3.2.

If desired, the behavior of the calibration parameter can be changed by modifying the
appropriate function in the file /helpers/dataset loaders.py.

9.4.2 ADC range optimization

After a profiling simulation is completed, the results are saved as .npy files in the destination folder
in the format summarized by Table 9.1. The next step is to process these ADC input distributions
and determine the optimal ADC ranges for each layer and/or weight bit slice. There are many
different possible methods to perform this optimization and several example scripts can be found in
the /adc/ directory. The user can also define a custom ADC optimization function.

The calibrated ranges are saved to a .npy file, which can be accessed in subsequent inference sim-
ulations via the function load adc activation ranges() inside /inference/inference util/

CNN setup.py. The user will need to add additional logic to this function to ensure that the correct
ADC ranges are loaded.

Range optimization without weight bit slicing

The file resnet50 adc limits 1slice.py is an example script that generates ADC ranges for
each layer of a ResNet50 accelerator that does not use weight bit slicing. This file can be adapted
for other datasets and neural networks. Profiled ADC inputs are loaded from the directory specified
by profiling folder and the ranges are saved to an output at the file specified by output name.
By default, the output destination is a file in /adc/adc limits/. The files containing the profiled
ADC inputs used by this example script are not included due to their large size, but can be generated
using the procedure described in the previous sections.

The file implements the high-level algorithm shown in Fig. 9.4. The value of Nbits is a free
parameter that specifies the quantization resolution used during the optimization procedure. The
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optimal value of this parameter depends on the ADC resolution used during inference, but the two
values do not need to match. This is because the quantization error computed by the algorithm
in Fig. 9.4 is only an approximate proxy for the inference accuracy. In general, a larger value of
Nbits leads to a larger calibrated ADC range. Empirically, we have found that it is often helpful for
Nbits to be larger than the actual ADC resolution. In general, we have also found that the inference
accuracy is not strongly sensitive to Nbits provided that it is not too small.

The range is a tuple specifying the minimum and maximum. In most cases, the minimum and
maximum are optimized independently. One exception to this is when ReLU-aware ADC range
optimization is used, enabled by setting reluAwareLimits=True. In this case, only the maximum
is optimized and the minimum is left equal to the smallest value seen in the layer’s profiled ADC
inputs. This option should only be enabled if the ReLU-aware profiling option was used (see Section
9.4) and some network-specific metadata has to be provided to ensure that this is applied only to the
appropriate layers.

The example script resnet50 adc limits 1slice ibit.py is very similar but processes
ADC input files for each input bit, with the assumption that ADC per ibit=True in the inference
simulation. The algorithm is identical since different input bits see the same ADC range.

Range optimization with weight bit slicing

When weight bit slicing is used, the ADC range of each slice is optimized. However, the ADC
ranges for different slices are coupled, because they are constrained to differ only by powers of
two. This constraint is necessary to enable a practical digital implementation of the shift-and-add
aggregation of results from different slices (see Section 9.3.1).

The file resnet50 adc limits bitsliced.py is an example script that generates ADC
ranges for each layer and each weight bit slice of a ResNet50 accelerator that uses weight bit
slicing. Rather than directly optimizing the numeric values of the ADC minimum and maximum,
this function optimizes the value of Ci for each bit slice as defined by Equations (9.1) and (9.2). The
value of Ci is optimized for each layer and each bit slice, then the array containing these values is
saved to an .npy file. How the optimization is done depends on the negative number representation
and whether the layer takes signed inputs as described in Section 9.3.1.

There is a percentile hyperparameter (pct) that controls the ADC range optimization process
with weight bit slicing. The value of pct controls the range of profiled ADC inputs that the ADC
limits defined by Equations (9.1)-(9.2) must cover. For example, if pct=99.999, then the 99.999th

percentile and the 0.001th percentile of the profiled ADC inputs must fall within the ADC limits. A
value of pct that is closer to 100 will reduce clipping errors, but will increase quantization errors.
Several values of this parameter may need to be evaluated to determine the best-performing value
(in terms of inference accuracy) at a given ADC resolution. The value of pct is included as part of
the output file name containing the calibrated ADC ranges. During the inference simulation, the
value of pct can be specified in inference config.py, and this value is then passed in to the
load adc activation ranges() function to select the desired set of ADC ranges.

9.5 Setting the activation ranges

As with the ADC, the range of the activations specifies the values of the minimum and maximum
quantization levels. These ranges are static and do not change during inference. This range is
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specified as a (min,max) tuple and is set separately for each of the layers in the neural network.
Input activation ranges can differ between layers, but do not differ between weight bit slices or
matrix partitions. If dac bits is set to zero, the ranges are not used.

Unlike the ADC ranges, activation ranges do not depend on the hardware parameters such as
array size, weight bit slicing, and negative number representation. The same activation ranges
can be re-used for many different hardware configurations of the same neural network, with the
exception of activation resolution (dac bits). If dac bits is non-zero, calibrated ranges for the
input activations must be provided for each layer, similar to the ”calibrated” ADC range option.

As mentioned in Section 9.2.2, if input bit slicing is enabled and the activation minimum is
negative, then one of the activation bits is treated as a sign bit. This sign-magnitude representation
implies that the range is symmetric about zero. In this case, if the provided range is (xmin, xmax), it
is converted to (−xamax,+xamax) where xamax = max(|xmin|, |xmax|). Due to the use of the sign bit,
there are two redundant representations of zero, and the total number of unique levels is 2B −1.

Calibrated activation ranges are provided for many of the provided neural networks. A full list of
these can be found inside the function load adc activation ranges() in the file /inference/
inference util/CNN setup.py. In general, these ranges have been optimized for dac bits=8

bits, though we have generally found that these same ranges are still very close to optimal for
resolutions close to 8 bits. To find calibrated activation ranges for a new neural network, the
procedure in Section 9.6 can be used.

9.6 Calibrating the activation ranges

The process for calibrating the activation ranges is similar to the process for calibrating the ADC
ranges, described in Section 9.4 and depicted in Fig. 9.3. First, an activation profiling simulation is
performed using the calibration dataset and the results are saved to a directory of .npy files. Then,
the profiled activation inputs are processed to optimize each layer’s activation ranges, which are then
saved to a .npy file. Finally, the calibrated ranges can be selected during an inference simulation
as described in Section 9.5. The main difference between ADC and activation range calibration is
that as previously described, the optimal activation rages do not directly depend on the negative
number representation, number of matrix partitions, weight bit slcing, or input bit slicing. Therefore,
for a given neural network, a single calibration step is typically sufficient even if these hardware
parameters are changed.

An activation profiling simulation is performed by running run inference profiling.py

with profile DAC inputs=True. Activation quantization must be disabled, i.e. dac bits=0.
The result will be one .npy file per neural network layer in the output directory.

After profiling the activations, their range can be optimized. An example script for a ResNet50
accelerator is given in /adc/resnet50 dac limits.py, which uses the same algorithm shown in
Fig. 9.4 for the ADC limits. For this particular neural network, because the quantization step always
follows a ReLU function, the lower limit of the activation range can always be set to zero and only
the upper limit needs to be optimized.

Calibration of the ADC and activation ranges can be performed in either order; in general,
we have not found this order to make a large difference, especially at higher ADC and activation
resolutions. If the ADC ranges are calibrated second, then the ADC input profiling simulation can
be performed with activation quantization enabled, using the previously calibrated activation ranges.
The reverse applies if the activation ranges are calibrated second.
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Chapter 10

CrossSim Inference GPU performance

CrossSim simulations can be run on a CUDA GPU, if available, to improve performance. To enable
this functionality, the CuPy package must be installed, which is used by CrossSim to access the
CUDA Toolkit libraries.

10.1 Enabling GPU acceleration

GPU acceleration can be enabled by setting the parameter useGPU to True in the configuration file,
inference config.py. If multiple GPUs are available on the system, the parameter gpu num

selects a GPU based on the ID assigned by CUDA (set to 0 if only one is available). Currently,
an individual CrossSim simulation can only be run on one GPU. Multiple independent CrossSim
simulations can be simultaneously run on different GPUs.

10.2 Sliding window packing

When simulating CNN inference, the runtime per simulation is typically bottlenecked by the
convolutional layers, which must be decomposed into many sliding window MVMs when run on
analog arrays (see Section 6.1). CrossSim supports a simulation mode called sliding window packing
which greatly accelerates the simulation of convolutions. This mode can be enabled with or without
GPU acceleration, though the benefits are much greater when using a GPU due to the large matrix
operations involved.

Fig. 10.1 illustrates the idea of sliding window packing. A 2×2 grid of sliding windows within
the input feature map typically requires four separate MVM simulations to compute. The four
MVMs can be packed into a single MVM by constructing a long vector that contains the inputs to
all four MVMs (some of which may be repeated). For this packed simulation, the conductance array
also needs to be expanded by a factor of four in each dimension. The original conductance array is
repeated four times along the diagonal of this expanded array. All other elements that are not part
of this block diagonal are set to always have a conductance of exactly zero (actual zero, and not
Gmin). This ensures that the MVM results computed using this expanded array exactly match the
results from simulating four sequential sub-MVMs with the original conductance array, i.e. the four
sub-MVMs are entirely decoupled. Although a block diagonal matrix is shown in Fig. 10.1, in some
cases CrossSim will redistribute the duplicated weights to exploit the fact that many input elements
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Figure 10.1: Illustration of sliding window packing using an example convolution with a 3×3 sliding
window. The input has 1 channel and the output has 4 channels. A 2×2 grid of sliding windows
(x par=2, y par=2) can be computed in parallel by packing them into a single MVM computation.
This is done by constructing a block diagonal matrix from the original array conductance matrix
(yellow). In some cases, CrossSim will construct a Toeplitz matrix for the convolution, which is
more memory-efficient than a block diagonal matrix.

are shared across adjacent sliding windows. This construction allows a smaller matrix to be used
with fewer zeros, which saves GPU memory.

More generally, this technique can be used to simulate an Xpar ×Ypar grid of sliding windows in
parallel using a single packed MVM. Although the individual MVM simulations are bigger, this
reduces the number of required MVM simulations by XparYpar. However, the size of the conductance
array in memory might increase by as much as a factor of

(
XparYpar

)2 (for the block diagonal case)
even though most of these elements may be zero.

The values of Xpar and Ypar can be set on a layer-by-layer basis for a neural network. These values
are set inside the function get xy parallel() in /inference/inference util/CNN setup.py.
There are two hard constraints on the possible values of Xpar and Ypar:

1. For a given layer, Xpar must be smaller than the size of the output feature map along x. The
same constraint applies to Ypar. The shape of the output feature map for each layer can be
checked using the show model summary feature.

2. Across the entire neural network, the values of Xpar and Ypar must be kept small enough that
the GPU does not run out of memory when the expanded conductance arrays for all layers
(and weight bit slices) are generated.

Additionally, if the product XparYpar for a layer is too large, the performance may stop improving or
potentially degrade even if the GPU does not run out of memory, because the conductance matrix
has become too large to yield a speedup from sliding window packing.

When running an ADC input profiling simulation or an activation profiling simulation (Section
9.4), the values of Xpar and Ypar are automatically set to 1 for all layers, i.e. sliding window packing
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is disabled. This is to keep more memory available for the profiled ADC inputs or activations, even
if the profiling simulation runs slower.

10.2.1 Parameter tuning for optimal performance

Inside get xy parallel(), an array of values for Xpar and Ypar is provided for several neural
networks and hardware configurations. These values were tuned to give optimal performance for
these networks on a Nvidia V100 GPU, while also being able to fit inside 32GB of memory. These
may have to be re-tuned when using a GPU with less memory (or more memory). Tuning these
parameters without running out of memory may require a trial-and-error procedure.

In general, the early layers of a CNN require the greatest number of sliding windows due to
their large input feature maps along x and y. Fortunately, these layers also tend to have the smallest
weight matrices due to having fewer input and output channels. This allows Xpar and Ypar to be set to
relatively large values for these layers without consuming a large amount of memory, which helps
speed up the simulation significantly.

We recommend the following procedure for tuning the Xpar and Ypar parameters for a given
neural network model:

• Start by setting Xpar =Ypar = 1 for all layers, and make sure that this case fits onto the memory.
• Increase Xpar and Ypar gradually for one layer or one group of layers at a time, until either (1)

the performance stops improving, (2) Xpar and Ypar reach their maximum values, or (3) the
GPU runs out of memory. If an out-of-memory error is encountered, reduce these values.

• Increase Xpar and Ypar for the early layers first. The optimal parameters for performance may
call for much larger values for the early layers than for the later layers, as explained above.

When parasitic resistance (Section 8.3) is included in the simulation, the benefits of increasing
Xpar and Ypar can diminish much more rapidly. This is because a circuit simulation of an MVM includ-
ing parasitic resistance is much more computationally complex than a standard MVM simulation, and
its complexity increases much more quickly with the size of the conductance array. For this reason, a
separate function is use to set Xpar and Ypar when Rp is non-zero: get xy parallel parasitics().
For any given neural network, the optimal values of Xpar and Ypar are significantly smaller.

10.3 Performance benchmarking

In this section, we benchmark the inference simulation performance of CrossSim for a number of
representative use cases. The benchmarking is done using two hardware systems:

• GPU: 1× Nvidia V100 GPU, 32GB memory, CUDA 10.2, CuPy v8.3.0
• CPU: 2× Intel Xeon 8168, 24 cores each, 2.7 GHz

In all of the following results unless otherwise noted, the performance is based on optimally tuned
parameters for sliding window packing.

10.3.1 Performance with GPU acceleration and sliding window packing

Table 10.1 compares the performance of the CPU and GPU on several neural networks. These
simulations assumed: differential cells, ADC enabled, NrowsMax=1152, no weight bit slicing, no
input bit slicing, no read noise, and no parasitic resistance.

When sliding window packing is not used, the performance improves with GPU acceleration
if the neural network has sufficiently large MVMs. Optimal sliding window packing enables a
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Table 10.1: Comparison of CPU and GPU performance with sliding window packing
Dataset Neural

network
CPU runtime, no
sliding window

packing

GPU runtime, no
sliding window

packing

GPU runtime,
optimal sliding

window packing
ImageNet ResNet50 20.58s / image 13.59s / image 0.95s / image
ImageNet VGG-19 82.07s / image 35.50s / image 2.42s / image
CIFAR-10 ResNet-56 1.61s / image 5.68s / image 0.059s / image

MNIST CNN-6 0.23s / image 0.45s / image 0.0034s / image

significant performance improvement over CPU in all cases, and a ∼10× speedup over the GPU
baseline without sliding window packing.

We found that sliding window packing generally did not yield any performance improvement on
a CPU, even when the values of Xpar and Ypar are re-tuned for the specific neural network. The only
exception to this was the smallest network, CNN-6, whose CPU performance improved to 0.05s /
image with optimal sliding window packing.

10.3.2 Performance with different analog hardware settings

Table 10.2: Performance on ResNet50 (ImageNet) using different analog hardware settings
ADC

enabled
# weight bit

slices
# input bit

slices
NrowsMax Read noise

enabled
GPU runtime

False 1 1 1152 False 0.88s / image
True 1 1 1152 False 0.95s / image
True 1 1 1152 True 4.82s / image
True 1 8 1152 False 5.30s / image
True 4 1 1152 False 3.09s / image
True 1 1 288 False 1.52s / image
True 1 1 144 False 2.28s / image
True 4 8 288 False 32.4s / image
True 4 8 288 True 268.5s / image

Table 10.2 shows the GPU runtime for an inference simulation using ResNet50 on ImageNet,
using various settings for the hardware configuration. These simulations assumed: differential cells,
8-bit weight quantization, 8-bit activations, and no parasitic resistance.

Using more weight bit slices, more input bit slices, and more array partitions (smaller NrowsMax)
all increase the runtime by increasing the number of MVM simulations performed. The effect of
NrowsMax depends on the neural network. For ResNet50, the largest layers have 4608 inputs while
the smallest layers have 64 inputs; thus, for a given value of NrowsMax, only a subset of the layers
have partitioned weight matrices. Including read noise increases runtime since random numbers
must be generated on each MVM simulation. We find that to optimize performance for read noise, it
is preferred to have XparYpar > 1 for as many convolution layers as possible.
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10.3.3 Performance vs neural network

Table 10.3: Performance on selected neural networks
Dataset Neural network # MVM

layers
# weights GPU runtime

ImageNet ResNet50 54 25.61M 0.95s / image
ImageNet VGG-19 19 143.67M 2.42s / image
ImageNet MobileNetV1 28 4.22M 0.82s / image
ImageNet InceptionV3 95 23.85M 1.45s / image

CIFAR-100 ResNet56 cifar100 58 13.68M 0.24s / image
CIFAR-10 ResNet56 58 861.8K 0.059s / image
CIFAR-10 ResNet32 34 470.2K 0.029s / image
CIFAR-10 ResNet20 22 274.4K 0.026s / image
CIFAR-10 ResNet14 16 176.6K 0.019s / image

MNIST CNN-6 6 61.6K 0.0034s / image

Table 10.3 shows the GPU runtime for selected neural network models using the same analog
hardware settings. These simulations assumed: differential cells, ADC enabled, NrowsMax=1152,
no weight bit slicing, no input bit slicing, no read noise, and no parasitic resistance.

10.3.4 Performance with parasitic resistance

Table 10.4 shows the GPU runtime for two CIFAR-10 neural networks using different values of the
normalized parasitic resistance Rp. These simulations assumed: differential cells, ADC enabled,
NrowsMax=1152, no weight bit slicing, 8-bit activations, no read noise, noRowParasitics=True
and interleaved posneg=False.

Inference simulations that include parasitic resistance effects are the most computationally
expensive simulations in CrossSim, as described in Section 8.3. The performance is dependent on
the value of parasitic resistance; the larger the parasitic resistance, the larger the parasitic voltage
drops, and more iterations of the circuit simulation are needed to converge on the solution. For the
networks in Table 10.4, the accuracy degradation is relatively small when increasing Rp from 10−5

to 10−4, but is large when increasing Rp from 10−4 to 10−3 [23].
If Rp is large, the runtime per image will typically decrease over the course of an inference

simulation as more optimal parameters for controlling the convergence of the circuit simulation are
found.
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Table 10.4: Performance with parasitic resistance using two CIFAR-10 neural networks
Neural network # input bit slices Rp GPU runtime

ResNet14 8 10−5 14.9s / image
ResNet14 8 10−4 17.2s / image
ResNet14 8 10−3 41.1s / image
ResNet56 8 10−5 67.1s / image
ResNet56 8 10−4 79.5s / image
ResNet56 8 10−3 187.1s / image
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