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2 License 

CrossSim is licensed under the BSD-3 License: 

Copyright 2017 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 

with Sandia Corporation, the U.S. Government retains certain rights in this 

software. 

All rights reserved. 

 

Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions are met: 

    * Redistributions of source code must retain the above copyright 

      notice, this list of conditions and the following disclaimer. 

    * Redistributions in binary form must reproduce the above copyright 

      notice, this list of conditions and the following disclaimer in the 

      documentation and/or other materials provided with the distribution. 

    * Neither the name of the Sandia Corporation nor the 

      names of its contributors may be used to endorse or promote products 

      derived from this software without specific prior written permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 

ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION BE LIABLE FOR ANY 

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
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3 Overview 

CrossSim is a crossbar simulator designed to model resistive memory crossbars for both neuromorphic 

computing and (in a future release) digital memories.  It provides a clean python API so that different 

algorithms can be built upon crossbars while modelling realistic device properties and variability.  The 

crossbar can be modelled using a fast approximate numerical model as well as a slower, but more accurate 

circuit simulation of the devices using the parallel spice simulator Xyce (to be documented/debugged in a 

future release). 

3.1 Neuromorphic Computing Background 

Resistive memory crossbars can dramatically reduce the energy required to perform computations in neural 

algorithms by five orders of magnitude or more when compared to a conventional CPU[1]. For data 

intensive applications, the computational energy is dominated by moving data between the processor, 

SRAM (static random access memory), and DRAM (dynamic random access memory)[2]. New approaches 

based on memristor or resistive memory [3-6] crossbars can enable the processing of large amounts of data 

by significantly reducing data movement, taking advantage of analog operations [7-11], and fitting more 

memory on a single chip. 

Resistive memories are essentially programmable two terminal resistors. If a write voltage is applied to the 

device, the resistance will increase or decrease based on the sign of the voltage, allowing the resistance to 

be programmed. At lower voltages, the state does not change. Consequently, these devices can be used to 

model a neural synapse wherein the resistance acts like a weight that modulates the voltage applied to it. 

This has resulted in a large interest in developing neuromorphic systems based on such devices [7-10]. 

Ideally, the resistive memories would have a perfectly linear and controllable response allowing them to be 

programmed to any arbitrary analog value. Unfortunately, realistic devices have many non-idealities that 

need to be modelled in order to model a realistic system. 

The key design considerations for an effective neural algorithm accelerator is that it should both reduce the 

computation energy by orders of magnitude, and it should be flexible enough that it can run many different 

neural algorithms. In [11] it is shown that a resistive memory crossbar can accelerate two key operations: 

1) a parallel read, or vector matrix multiply, and 2) a parallel write or rank one outer product update, as 

illustrated in Fig. 1. Many neural algorithms such as sparse coding, restricted Boltzmann machines, and 

backpropagation rely heavily on these two operations. The difference in the implementation of these 

algorithms is how the inputs and outputs of a crossbar are processed. Consequently our simulator is built 

around these operations.  Our simulator models the crossbar in detail, while providing an API that allows 

arbitrary “neuron” functions to be written in python that process the inputs and outputs to the crossbar. 

An NxN crossbar accelerates O(N2) operations, while it has O(N) inputs or outputs. This means that the 

energy to process an input or output can cost O(N) times more than the energy to read or write a single 

resistive memory element without significantly increasing the system energy. This key insight can be used 

to optimize the tradeoff between energy efficiency and system flexibility. A crossbar based neural core can 

be used to perform the parallel vector matrix multiply and outer product update, while a more general 

purpose digital core can be used to process the inputs and outputs of the crossbar. This is illustrated in Fig. 

2. The neural core is illustrated in Fig. 3.  The simulator was designed considering this model, but the 

generalized API can also be used with specialized hardware neuron models. 
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Fig. 1. (a) Analog resistive memories can be used to reduce the energy of a vector-matrix multiply. The 

conductance of each resistive memory device represents a matrix element or weight. Analog input vector 

values are represented by the input voltages or input pulse lengths, and output vector values are represented 

by currents. This allows all the read operations, multiplication operations and sum operations to occur in a 

single step. A conventional architecture must perform these operations sequentially for each weight 

resulting in a higher energy and delay. A matrix-vector multiply can also be performed by driving the 

columns and reading the currents on the rows. (b) A parallel write is illustrated. Weight Wij is updated by 

xi×yj. In order to achieve a multiplicative effect the xi are encoded in time while the yj are encoded in the 

height of a voltage pulse. The resistive memory will only train when xi is nonzero. The height of yj 

determines the strength of training when xi is nonzero. The column inputs yj can also be encoded in time as 

in [12]. 

 

Fig. 2. A general purpose neural architecture is shown. The neural cores only perform parallel vector 

matrix multiplication, matrix vector multiplication and parallel rank 1 outerproduct updates. For a NxN 

crossbar the neural core performs O(N2) operations. The general purpose digital cores process the O(N) 

inputs/outputs to the neural cores and use the routing network to route data between cores. The flexibility 

of the digital cores allow for many different algorithms to be implemented, while still taking advantage of 

the neural cores to accelerate O(N2) operations. The digital cores can also use digital on-chip resistive 

memory instruction caches to store slowly changing data while reserving expensive SRAM caches only for 

the data being processed. 
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(a)   

(b)  

Fig. 3. (a) A neural core is illustrated. A bias row and column are added to the crossbar to allow for 

negative weights [17]. The rows and columns are driven by either variable length or variable height pulses. 

The output currents are integrated and then converted to digital using an A/D.  (b) Negative weights can 

also be modelled using a second crossbar to subtract the bias. 

4 Installation 

CrossSim can be downloaded from http://cross-sim.sandia.gov.  It can be installed using pip: 

>>pip install cross_sim-0.1.0.tar.gz 

Additionally, examples.tar.gz should be downloaded for useful example scripts on how to use CrossSim. 

CrossSim requires Python 3.4 or greater, numpy>1.10, scipy, matplotlib, and mpldatacursor 

5 Neural Core API  

The crossbar is modelled as a neural core.  In order to instantiate a neural core, the parameters defining the 

neural core need to be set and then the core needs to be instantiated.  An example of instantiating a neural 
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core is given in examples/simple_core_use.py.  To create a neural core the following two objects should be 

imported from cross_sim: 

>>from cross_sim import MakeCore 

>>from cross_sim import Parameters 

Next, the default parameters should be loaded: 

>> params = Parameters() 

params is the Parameters object that specifies all of the simulations settings, noise and non-ideality 

models that will be used to model the neural core. 

The default parameters are stored in cross_sim/xbar_simulator/parameters/parameter_defaults.  Caution 

should be used in editing this file as it is not error checked.  Parameter settings should be changed as 

described in Section 6. 

After setting parameters in the params object as described in Section 6, the neural core should be 

instantiated: 

>> neural_core = MakeCore(params=params)  

Once instantiated, a neural core can be used as the matrix kernel for any neuromorphic algorithm.  Each 

matrix in an algorithm should be instantiated as its own neural core.  It stores the weights on a matrix 

internally and performs noisy updates as well as noisy vector matrix multiplies based on the noise models 

specified.  The functions that can be called are: 

>>neural_core.set_matrix(weights) # set the initial weights 

This sets the weights to use and creates a crossbar that is the same size as weights.  The weights 

are set exactly without noise or non-idealities (subject to clipping limits the limit the weight range) 

>>neural_core.run_xbar_vmm(vector) # Do a vector matrix multiply 

This runs a vector matrix multiply using the stored matrix and the input vector and returns the 

result.  It applies noise and other non-idealities to the result. 

>>neural_core.run_xbar_mvm(vector) # Do the transpose, a matrix vector multiplication  

This runs a matrix vector multiply using the stored matrix and the input vector and returns the 

result.  It applies noise and other non-idealities to the result. 

>>neural_core.update_matrix(row_vector, col_vector, learning_rate=1) # outer product update 

This runs an outer product update, applying row_vector on the rows and col_vector on the cols.  

The updates are clipped and quantized based on the D/A settings in params and the resistive 

memory noise/non-ideality models are applied to the update.  The learning_rate scales the size of 

the update and is applied after the D/A scaling/quantization is applied.  The learning_rate assumes 

that the hardware D/A outputs can be efficiently scaled up or down and so D/A scaling & 

quantization should be applied first and then the learning rate scaling second.  If this is not true in 

a particular system, either row_vector or col_vector should be multiplied by the learning rate. 

>>neural_core.serial_update(self, matrix, learning_rate =1, by_row=True) 

This serially adds matrix to all the stored weights one row or column at a time.  Allows for slow 

non-neural updates. It assumes the drivers should be maxed out (i.e max out the row driver when 

applying analog updates to the columns).  by_row=True applies updates one row at a time (else 
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one column at a time if False).  learning_rate is defined above.  In a neuromorphic algorithm this 

function should be avoided as it requires serially writing the weights which costs more energy and 

time. 

>>neural_core.serial_read(self, by_row=True): 

Reads the matrix out one row at a time using VMMs (applies the noise/clipping associated with a 

VMM).  by_row=True means that the matrix is read out one row at a time using a VMM, while 

False means the matrix is read out one column at a time using a MVM.  In a neuromorphic algorithm 

this function should be avoided as it requires serially reading the weights which costs more energy 

and time. 

>> neural_core._read_matrix() 

This returns the exact values stored in the matrix and should only be used for debugging.   No noise/ 

non-idealities are applied. 

>> neural_core.save_weights(filename) 

Saves the weights in their internal representation to filename 

>> neural_core.load_weights(filename) 

Loads weights from filename 

6 Simulation Models & Parameter Settings 

All the simulation models can be customized by changing the parameter settings passed to MakeCore().  

After creating a params object with default settings using the following statement, the simulation models 

can be customized by changing the defaults. 

>> params = Parameters() 

The settings are grouped into 6 different categories: 

• params.algorithm_params 

o These settings control how the neural core interacts with external algorithm wrapped 

around it, i.e., what are the fixed point ranges accepted by the neural core.  It also sets the 

general properties of the neural core. 

• params.xbar_params 

o These are the properties of the crossbar A/D and the physical scaling range of the resistive 

memory 

• params.numeric_params 

o These parameters are the properties of the numeric crossbar model 

• params.periodic_carry_params 

o These parameters configure periodic carry, if used 

• params.xyce_params 

o These are the properties required to configure the xyce crossbar model 

• params.memory_params 

o These are the properties required to configure the memory core model 

• params.analytics_params 
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o These are settings for turning on analytics such as saving weights after each update 

There is also an entirely internal set of parameters that are derived from the above settings and used 

internally to help scale from the algorithm_params to the xbar_params: 

• params.wrapper_params (do not use) 

6.1 Simulation Type 
>>params.algorithm_params.weights.crossbar_type = “OFFSET” 

This specifies the crossbar model to use. Setting it to “OFFSET” specifies that negative numbers 

will be represented by subtracting a bias in the center of the conductance range as illustrated in Fig 

3(a).  Setting it to “BALANCED” will use two crossbars to represent negative numbers.  The 

difference between two weights specifies the final weight.  Updates are performed by applying half 

the update to the positive crossbar and minus half the update to the negative crossbar.  Setting it to 

“MEMORY” will use the crossbar as a memory core (to be documented in the future). 

>>params.algorithm_params.weights.sim_type = “NUMERIC” 

This specifies the inner model of the simulation and should be set to either “NUMERIC” or 

“XYCE” specifying whether the simulation will use a numeric approximation to the circuit or 

whether an actual circuit simulation in xyce will be run for each neural core operation 

6.2 Scaling, A/D and D/A properties 

An analog crossbar performs computations in fixed point.  The weight range that an external algorithm uses 

is different from the conductance range stored on the crossbar.  Consequently, we need to scale and unscale 

the weights and vectors for all interactions with an algorithm.  To do this we need to specify all the input 

and output ranges that the algorithm needs.  The simulator will then scale to ranges the hardware can use.  

The scaling ranges need to be specified as follows.  In general the min values should be equal and opposite 

the max values unless otherwise specified.  Values beyond the max/min will be clipped to the max/min. 

All scaling / clipping can be ignored by setting the following parameter.  Ideally, this should only be used 

for debugging or for comparing to an ideal floating point simulation: 

>>    params.algorithm_params.disable_clipping = True 

6.3 Algorithm clipping limits 

In general the following limits should be set based on the algorithm being run 

>>params.algorithm_params.weights.maximum = 10 

>>params.algorithm_params.weights.minimum = -10 

These specify maximum and minimum values that the weights can take.  This sets how the weights 

will be scaled to a physical conductance.  When using the offset core the minimum weight can be 

zero, allowing for only positive weights.   

>>params.algorithm_params.col_input.maximum = 1.0 

>>params.algorithm_params.col_input.minimum = -1.0 

This specifies the column input range for matrix vector multiplies   

>>params.algorithm_params.row_input.maximum = 1.0 
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>>params.algorithm_params.row_input.minimum = -1.0 

This specifies the row input range for vector matrix multiplies   

>>params.algorithm_params. row_output.maximum = 20 

>>params.algorithm_params. row_output.minimum = -20 

This specifies the output range for the result of a matrix vector multiply.  The output of a crossbar 

is fed into an op-amp that saturates at some output value.  Consequently, there is a max/min output. 

>>params.algorithm_params. col_output.maximum = 20 

>>params.algorithm_params. col_output.minimum = -20 

This specifies the column output range for vector matrix multiplies   

>>params.algorithm_params. col_update.maximum = 5 

>>params.algorithm_params. col_update.minimum = -5 

>>params.algorithm_params. row_update.maximum = 5 

>>params.algorithm_params. row_update.minimum = -5 

These specify the limits of the row and column update.  The max row update × the max col update 

gives the maximum update size in one cycle. 

>>params.algorithm_params.serial_read_scaling = 1 

When doing a serial read, the output of the integrator is scaled by this value before being passed to 

the A/D and then unscaled after the A/D.  We may need a different output range during a parallel 

read than a serial read, as only one device is being read during a serial read.  This option allows for 

that.  Physically, this could represent changing the capacitor used to integrate the output or scaling 

the length or voltage of a read pulse. 

6.4 Crossbar Weight Limits 

The resistive memories typically have a finite on/off ratio.  Modelling this can affect some noise models.  

This is modelled by setting the crossbar weight range as follows: 

>>params.xbar_params.weights.maximum = 1 

>>params.xbar_params.weights.minimum =  0.1 

In the ideal case, max=1 and min=0.  Setting the min to a positive non-zero value results in a finite 

on/off ratio of max/min.  If these are changed the following parameters should be changed to match: 

>>params.xbar_params.weight_clipping.maximum = 1 

>>params.xbar_params.weight_clipping.minimum =  0.1 

The first set of values, xbar_params.weights, represents the target range for scaling values 

between the crossbar and the algorithm.  The second set of values, xbar_params.weight_clipping, 

represents a potentially larger clipping window that allows the weights to exceed the target range.  

This is useful for experimentally characterized devices where the device noise and nonlinearity is 

characterized over a wide range of conductance, but we may only want to use a narrow range of 

conductance where the properties are favorable.  In this case, xbar_params.weights should be set 

to use the target range while xbar_params.weight_clipping should be set to the larger clipping 

range where the weights are clipped to the max/min. 

6.5 A/D and D/A properties 
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A key part of the neural core is that the inputs and outputs are converted between digital and analog.  By 

default, it is assumed that the conversion is performed ideally, with arbitrary precision and accuracy. For 

each of the 6 interfaces to the core (row_input, col_input, row_output, col_output, row_update and 

col_update) it is possible to set a finite bit precision as well as different noise models that can be applied.  

The models are shown for the row_input, but can be applied to any of the 6 interfaces.  The settings are 

set under the xbar_params as the A/D and D/A properties are properties of the crossbar.   

6.5.1 Bit Precision 

>>params.xbar_params.row_input.bits = 0 

This sets the number of bits that the input is quantized to.  Zero means no quantization / arbitrary 

precision. 

>>params.xbar_params.row_input.sign_bit = True   

This determines whether a sign bit should also be used.  The quantization model with and without 

a sign bit is illustrated in Fig 4.  The total number of bits is bits+sign_bit. 

>>params.xbar_params.row_input.stochastic_rounding = False   

If False, the values are quantized by rounding to the nearest value as illustrated in Fig 4.  If True, 

values are stochastically rounded to the nearest value and the exact value determines the 

probability.  For instance, 9.2 will be rounded to nine 80% of the time and rounded to ten 20% of 

the time.  This is useful for training as information from the average value can be learned over 

many training epochs. 

 

 

Fig. 4:  Quantization models for (a) 1 bit with a sign bit and (b) 2 bits with a sign bit, (c) 2 bits without a 

sign bit. 

6.5.2 Gaussian noise applied after quantization 

>>params.xbar_params.row_input.normal_error_post.sigma = 0.0 

This model adds Gaussian noise after the quantization is applied.  The noise sigma is defined 

relative to the full weight range such that: 

new value = old value + N(sigma×range) 

>>params.xbar_params.row_input.normal_error_post.keep_within_range = True 

1 bit + sign
= 2^(n+1) – 1 levels
= 3 levels

2 bit + sign
= 2^(n+1) – 1 levels
= 7 levels

2 bit
= 2^(n) levels
= 4 levels
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Applying noise can cause the values to exceed the clipping ranges set above.  Setting this to True 

(default= True) causes the final value to be clipped to the clipping ranges, False allows the value 

to exceed the clipping ranges. 

>>params.xbar_params.row_input.normal_error_post.proportional = False 

This changes the noise model to a model where the noise is proportional to the value: 

False: new value = old value + N(sigma × range) 

True:  new value = old value × [ 1+N(sigma) ] 

6.5.3 Gaussian noise applied before quantization 

This noise model, normal_error_pre, is the same as above, but is applied before clipping or quantizing 

the values 

 

>>params.xbar_params.row_input.normal_error_pre.keep_within_range = True 

>>params.xbar_params.row_input.normal_error_pre.proportional = False 

>>params.xbar_params.row_input.normal_error_pre.sigma = 0.0 

6.5.4 Uniform noise applied after quantization 

This is a uniform noise applied after quantization 

>>params.xbar_params.row_input.uniform_error_post.range = 0.0 

Setting the range to a nonzero value turns the model on.  The range is defined as a fraction of whole 

range 

>>params.xbar_params.row_input.uniform_error_post.keep_within_range = True 

Clips the resulting value to the clipping constraints 

6.6 Numeric Matrix Read Noise Model 

Each time the matrix is read (VMM or MVM), a Gaussian read noise can be applied to each weight.  The 

noise parameters are defined the same as above for normal_error_post.  This model only applies to a 

numeric crossbar model.  The settings are: 

>>params.numeric_params.read_noise.sigma = 0 

>>params.numeric_params.read_noise.proportional = False 

>>params.numeric_params.read_noise.keep_within_range = True 

6.7 Numeric Matrix Update Model 

When updating the weights there are two numeric models that can be used:  1) and analytic update model 

and 2) an experimental lookup table model.  The models are selected as follows: 

>>params.numeric_params.update_model = "ANALYTIC" 

This model uses the analytic nonlinearity and write noise models in [13] and is described in Section 

6.7.2. 

>>params.numeric_params.update_model = "DG_LOOKUP" 

This model uses a lookup table based on experimental ΔG vs G plots as described in Section 6.7.1. 
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6.7.1 Lookup Table Update Model 

6.7.1.1 Model Overview 

This model takes a experimentally measured ΔG vs G plot as shown if Fig. 5 and uses that to compute the 

noisy updates.  This model is explained in detail in the supplementary information of [14]. 

 

  

 

Fig. 5:  The ΔG vs G response for (a) decreasing and (b) increasing pulses of a voltage controlled Lithium 

Ion Synaptic Transistor [14] is shown.  In the simulator, the data is represented the cumulative probability 

vs conductance as shown in (c) and (d) for decreasing and increasing pulses respectively. 

 

Using the experimental ΔG vs G plots, Figs 5(a) and 5(b), we need to determine how much the mean update 

will be and how much noise to add to that update given the update requested by the algorithm.  Consider 

Fig. 5(b),  This plot is generated for only a single pulse size that has a mean update around 0.5 µS, with the 

exact mean value slightly higher or lower depending on the initial conductance, Go.  For a particular training 

example, a different update, perhaps 0.1 µS may be desired.  To find the update, first we see what state, Go, 

the device is in, find the average update at Go from Fig 5(b) and sample a noise value from the probability 

distribution at Go in Fig 5(b).  Then we scale the mean value and the noise value according to the desired 

0.1 µS update.  For instance, if Go=170 µS, the mean update is 0.3 µS.  Sampling from the probability 

distribution at Go, we might get an update of 0.35 µS, giving a write noise of 0.05 µS that was added to the 

mean update of 0.3 µS. 

(a) (b)

(c) (d)
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Since all the updates are done in parallel, we can only use a single scaling factor for all the updates.  The 

average update over the conductance range is 0.53 µS, while we wanted an update of 0.1 µS.  Consequently, 

the mean update of 0.3 µS at Go=170 µS should be scaled by 0.1/0.53 giving a new mean update of 0.057 

µS.  (The average update of 0.53 µS was only averaged over the center half of the conductance range, 180 

µS to 220 µS, as the system was designed to have most of the weights be in the center half of Fig 5b). 

The noise cannot simply be scaled by the same scale factor.  The noise increases relative to the size of the 

update as the update gets smaller.    This can be understood by thinking of the noise as a random walk.  If 

we use one pulse or two pulses to change the conductance from one state to another, the noise will be the 

same as long as the average initial and final states are the same. This implies that one longer or higher 

voltage pulse will cause the same physical change as two sequential pulses that end at the same average 

conductance.  Since the noise is the same for a given ΔG regardless of the number of pulses required to get 

a given ΔG, ΔG must be proportional to the variance of the noise, σ2. After multiple pulses, the variance of 

the noise in each pulse is additive. Therefore, G . This means that the noise should be multiplied by 

the square root of the scaling factor.  Thus the 0.05 µS of noise is scaled by 53.0/1.0 giving a write noise 

of 0.022 µS.  Thus the final update is the mean update of 0.057 µS + the write noise 0.022 µS, giving an 

update of 0.78 µS for the requested 0.1 µS updated. 

6.7.1.2 Model Usage 

The experimentally derived lookup table model is used when numeric_params.update_model = 

"DG_LOOKUP".  In order to use this model, a file containing the experimental lookup table should be 

supplied as follows: 

>>params.numeric_params.dG_lookup.file_increasing=”TaOx” 

>>params.numeric_params.dG_lookup.file_decreasing=”TaOx” 

These statements set the file locations of the lookup tables.  The path to a user defined file can be 

specified or one of the internally stored lookup tables can be specified.  The format for a user 

defined file is described below.  The included data sources are listed in the next section. 

>>params.numeric_params.dG_lookup.Gmin_relative = 0.25 

>>params.numeric_params.dG_lookup.Gmax_relative = 0.75 

The lookup table defines a large conductance range, but using only part of it may give better results.  

Gmin_relative and Gmax_relative define the fraction of the lookup table (25% to 75% of the 

range) to target using.  Weights can go outside the targeted range, but the weight scaling will be 

based on the targeted range.  Based on these values, xbar_params.weights, and 

xbar_params.weight_clipping will be set when the table is loaded, overwriting any previous 

settings. 

>>params.numeric_params.dG_lookup.disable_nonlinearity = False 

If True, the nonlinearity is ignored and only the write noise is used.  This represents a calibrated 

update where the amount written is based on the current state (This means the nonlinearity still 

impacts the level of noise as the noise is dependent on the size of the applied update). 

>>params.numeric_params.dG_lookup.disable_writenoise = False 

If True, the write noise is ignored and only the nonlinearity is used.  This is to investigate the impact 

of nonlinearity vs noise. 



14 

 

 

The datafile, which is plotted in Figs 5(c) and 5(d), should be a CSV file formatted as follows: 

• 1st row:  title text 

• 2nd row: conductance bins 

• 3rd row: discretized CDF bins 

• 4th row onwards: dG Matrix (rows =  CDF, Columns = conductance bins) 

If the conductance and CDF bins have a uniform spacing, interpolating from the table will run 

faster, speeding up the simulation significantly.  The example script create_lookup_table.py gives 

an example of how to create a lookup table from raw measurement data. 

6.7.1.3 Included Data 

CrossSim comes with data from several different sources.  These are stored under 

cross_sim/data/lookup_tables.  If the datasets are used, please cite the appropriate data sources listed below.  

The included datasets are: 

LISTA_current 

This is data from the Lithium Ion Synaptic Transistor from Ref [14] when measured using current 

controlled pulses.  Current control allows for lower write non-linearity and thus better performance. 

LISTA_voltage 

This is data from the Lithium Ion Synaptic Transistor from Ref [14]when measured using voltage 

controlled pulses.  The data is plotted in Fig 5. 

TaOx 

This is data from TaOx based resistive memories from Ref [15].  It was taken using 100ns read 

pulses. 

ENODe 

This is data from the electrochemical neuromorphic organic device (ENODe) from [16]. 

6.7.2 Analytic Update Model 

6.7.2.1 Analytic Write Noise Model 

A guassian write noise is added to the update.  The standard deviation of the noise can follow one of three 

models, which are compared in [13].  For all three models it is assumed that the noise is proportional to the 

sqrt(ΔG) so that the variance between multiple updates adds, following a random walk. 

  >>params.numeric_params.write_noise.sigma = 0 

The normalized standard deviation of the noise is set above.  This is converted into an absolute 

standard deviation based on the model set below.  Zero is no noise, disabling the model.  The 

resulting value is automatically clipped to the weight limits. 

>>params.numeric_params.write_noise.write_noise_model = "G_INDEPENDENT" 

There are three possible models as defined below (sigma_wn =  parameter set above) 

"G_INDEPENDENT" # write noise independent of the conductance 
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sigma = sqrt( delta_G × range) × sigma_wn 

"G_PROPORTIONAL" # write noise proportional to the current conductance 

sigma = sqrt( delta_G × range) × G/range × sigma_wn 

"G_INVERSE" # write noise inversely proportional to the current conductance 

sigma = sqrt( delta_G × range) × range/G × sigma_wn 

6.7.2.2 Analytic Nonlinear Update Model 

The size of the update depends on the current state.  This dependence can be modelled using a either an 

asymmetric or a symmetric nonlinearity model.  The details of both models are described in detail in [13].  

The model can be used by setting the following: 

>>params.numeric_params.nonlinearity.alpha = 0 

Alpha is the strength of the nonlinearity.  Zero means no nonlinearity, and a larger number is a 

worse nonlinearity 

>>params.numeric_params.nonlinearity.symmetric = False 

True means that a symmetric nonlinearity model will be used and false means an asymmetric 

nonlinearity model will be used.  

6.8 Periodic Carry 

6.8.1 Model Overview 

 

Fig. 6 (a) In a positional number system each column represents a different digit. (b) In order to enable 

blind updates, extra levels are used to store a carry which is periodically read and used to update the higher 

order bits. 

 

In order to compensate for noisy nonlinear devices a novel periodic carry method that uses a positional 

number system can be used to overcome device limitations while maintaining the benefit of parallel analog 

matrix operations as discussed in [15].  Multiple devices can be used to add additional levels. Adding 

devices in parallel to a single synapse increases the number of levels linearly with the number of devices.  

Neuron

×1 ×10 ×100

10 levels represent 

the weight

Extra levels 

store the carry

conductance

(a) (b)
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Positional number systems, such as a base 2 or base 10 can increase the number of levels exponentially 

with the number of devices as illustrated in Fig 6a, greatly enhancing the information storage capacity of 

each synapse.  Unfortunately, this is not compatible with the parallel outer product update in Fig 1b.  When 

updating a weight, carries need to be performed between digits: i.e. adding 1 to 9 requires resetting the 

resistive memory that holds 9 to 0 and adding 1 to the next digit.  Doing this would require serially reading 

out and updating the array, eliminating the benefit of the parallel analog computation.  We propose a new 

periodic carry method to solve this problem, illustrated in Fig 6b.  Each device uses a portion of its dynamic 

range to store carry information. Periodically (every 100-1000 updates) the device is read, and if the device 

is in the carry range, the device is reset to zero and the next bit is updated. This averages out the carry cost, 

allowing for parallel writes while obtaining significant increase in bits per weight.  

6.8.2 Model Usage 

>>params.periodic_carry_params.use_periodic_carry = False 

Set to True to turn on periodic carry 

>> cores_per_weight=3 

This specifies the number of cores/digits used to represent the weights 

>>number_base = 5 

This specifies the number system used between ReRAMs representing a weight (i.e base 5 or base 

10 number system).  Each weight is number_base times larger than the previous. 

>>carry_threshold=0.5 

At what fraction of the total weight range (including carry) should a carry be performed (weights 

less than this fraction are not carried) 

>>normalized_output_scale=10 

When doing a VMM or MVM on lower order bits, the output scale of the VMM result on lower 

order bits needs to be different from the overall output scale corresponding to the smaller weight 

range on a given lower order bit.  The scale is set by: input range* weight range* 

normalized_output_scale 

>>read_low_order_bits = True 

Include lower order bits when reading.  When False, only the highest order bit will be used during 

reads.  When true all bits will be used, but there could be errors due to bits saturating depending on 

how normalized_output_scale is set. 

>>carry_frequency' : [10,100] 

a list of relative carry frequencies to perform the carry on each weight, starting from the second 

highest order bit to the lowest. The number of carries = cores_per_weight - 1 

>>exact_carries' : False 

If True, carries are computed exactly (no read noise / nonlinearity etc).  This implies ideal carries 

with either write verify or ideal digital carries.  If false, read and write noise are applied when 

computing carriers 

>>zero_reset = “CALIBRATED” 

How to reset the ReRAMs after a carry.  There are three options: 
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"EXACT" - the ReRAMs are reset to zero exactly (implies write verify) after a carry 

"CALIBRATED" - use calibrated updates based on the current state, i.e. write noise only, no 

nonlinearity (only implemented w/ lookup table model) 

"BLIND" - use blind updates based on the average response, does not work well 

 

6.9 Neural Core Analytics 

Currently a single analytic is implemented.  The neural core can save the weights after each update so that 

the weight history can be analyzed.  The settings for this are given by: 

>>params.analytics_params.store_weights = False 

If this is set to True, the neural core will store all the weights after each update 

>>params.analytics_params.max_storage_cycles = 10000 

In order to limit memory usage, weights are stored for a finite number of updates, up to 

max_storage_cycles 

>>params.analytics_params.all_weights = True 

If True store all the weights in the matrix, if False, only store the weights specified as follows 

>>params.analytics_params.weight_rows = (0,1,2) 

>>params.analytics_params.weight_cols = (0,1,2) 

If all_weights = False, only store the weights with row indicies specified by weight_rows and col 

indicies specified by weight_cols 

 

If store_weights =True, the weights are stored in the following list 

>> neural_core.weights_list 

And the number of updates is stored here 

>> neural_core.update_ctr 

6.10 Xyce Model Settings 

To be added in the future 

7 Backpropagation 

An example file of how to run backpropagation is in examples/train_neural_net.py.  This will be 

documented better in the future. 

 

This example file sets all the neural core parameters based on the simulation model being used (which is 

set at the bottom of the file under “if __name__ ==’__main__’  ”.  If an ideal numeric simulation is run, a 
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different simplified neural core model is used.  Consequently, the backprop model has two neural core 

models: ncore.py and ncore_new.py. Only ncore_new.py uses CrossSim described above. 

7.1 Training Data 

For convenience, several backpropagation training datasets are included in cross_sim/data/backprop.  If 

they are used, please cite them.  There are: 

file_types: 

file_types is a Sandia file classification dataset from [17] It is 256 byte-pair statistical attributes to 

classify 9 file types. 

iris: 

iris is the iris flower dataset from the UCI machine learning database:  

https://archive.ics.uci.edu/ml/datasets/Iris/ 

mnist 

mnist is the MNIST handwritten digits dataset [18] 

small_images 

small_images is an 8x8 version of MNIST from: 

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits 
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