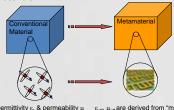
Metamaterial Science and Technology Grand Challenge LDRD

Sandia National Laboratories

M.B. Sinclair, F. B. (Rick) McCormick, L. Basilio, I. Brenner, P. Clem, M. Lee, L. Warne, D. Bender, D.B. Burckel, J. Carroll, S. Dirk, I. El-Kady, A.R. Ellis, J. Ihlefeld, J. Hu, W. Johnson, W. Langston, Y.J. Lee, H. Loui, B. Passmore, D. Peters, E. Shaner, G. Ten Eyck, J. Wendt


Problem

Background

What is a metamaterial?

μετα = meta = "beyond"

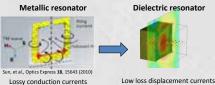
A metamaterial is an artificially structured material exhibiting electromagnetic properties not readily achievable with natural

are derived from "meta-units (bigger than atoms, << λ)

Absolute local control of the permittivity (ϵ) and permeability (μ) has lead to new paradigms for optical design

electromagnetic cloaking

negative refraction

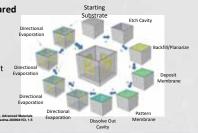

Subdiffractionlimited lensing

- Metamaterial devices have been demonstrated at RF frequencies.
- Two problems must be overcome to enable metamaterial applications in the infrared or shorter wavelengths:
 - optical loss: ohmic losses of metallic resonators lead to significant energy dissipation
 - lack of fabrication processes for the production of isotropic 3D metamaterials.

Approach

Low loss IR metamaterials

Replace lossy metallic resonators with high-Q dielectric resonators.

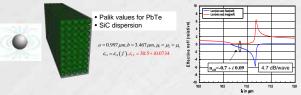


• Magnetic and electric dipole resonances can be utilized to tailor ϵ and $\mu.$

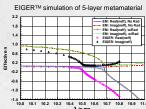
3D Metamaterial fabrication

Membrane projection lithography (MPL) developed to enable isotropic 3D metamaterials in the infrared

- Out-of-plane resonators
- · Planar lithography
- Many possible patterns
- Cavity geometry independent of resonator pattern
- Scalable
- Layer-by-layer → 3-D



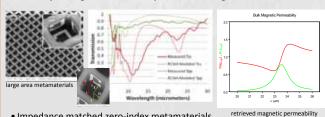
Results


All-Dielectric Negative Index Metamaterial

High permittivity PbTe spheres in polaritonic SiC matrix.

- PbTe spheres provide negative magnetic permeability; SiC matrix provides negative permittivity \rightarrow n_{eff}=-0.7+i0.09 at 10.8 µm.

Full Wave Simulation



- · Negative index optical lens
- · Significantly lower loss than published metallic designs. - even lower loss designs have been developed
- Currently fabricating using cube resonators and low-loss polymer matrix

3D Cubic Infrared Metamaterial

Metallic Split Ring resonators arrayed in 3D → magnetic metamaterial

- Impedance matched zero-index metamaterials
 - optical couplers
 - coherent thermal emitters
- Multilayer bulk 3D materials under development

Significance

- Reducing metamaterial loss is a key step toward realization of practical IR metamaterial devices
 - lenses & other optics
 - high-Q filters
 - concentrators, couplers, and cloaks
- Dielectric resonator metamaterials show best promise for low-loss
 - Prototype metamaterials are currently being fabricated
- Membrane Projection Lithography enables bulk IR metamaterials
 - currently metal-based metamaterial resonators
 - wide angle filters, absorbers, and emitters