MEGATUX

An Internet Emulation System to Enable Predictive Simulation of Nation-scale **Internet Behavior**

Sandia National Laboratories

Ronald Minnich / Rob Armstrong / Don Rudish / Kevin Pedretti / David Thompson / David Evensky / Ann Gentile / Brian Wylie

Problem

■Botnets are Prevalent in U.S.

Rank	# compromised in the US	Name	Purpose
1	3.6 Million	Zeus	Stealing
2	2.9 Million	Koobface	Rootkit
3	1.5 Million	TidServ	Rootkit
4	1.4 Million	Fakeavalert	Spaming/Spreading
5	1.2 Million	TR/Dldr.Agent.JKH	Clickbot
6	520,000	Monkif	Downloading Adware
7	480,000	Hamweq	Stealing
8	370,000	Swizzor	Adware
9	230,000	Gammima	Stealing
10	210,000	Conficker	Spread / ?

Scale of today's cyber systems has exceeded current modeling capabilities. Above are the sizes of the 10 most damaging botnets according to the Damballa security firm.

■Reverse Engineering is Time Consuming

- Frequently, a manual process
- May not show global botnet behavior

lating facility Constantions	Discountly	Code Analysis
Franchis Angesti	Authors Deathlasters	National Subsection
Charles Assess	Car Parkers	

Malware is spreading to other platforms

 Mobile devices are fully capable computers that can run Malware - Most mobiles are Unix or Windows like operating systems.

Approach

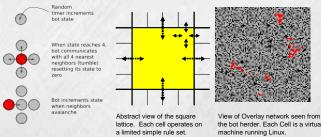
□Forensics is important and good but there may be a

□Use observation of <u>large scale</u> emulations to determine malware behavior.

□Bypass the Reverse Engineering Phase

- □Combine Emulation and Analytics to combat cyber
- □Create a testing Environment the size of a nation scale Internet with the help of virtual machines. Nodes of 106+ scale.
- Conduct replayable and repeatable Testing/Evaluation/Assessment

- □Use computational configuration to bring up virtual Internet containing millions of nodes/routers/services in minutes.
- □Use real operating systems / applications found on the


No central static configuration for the virtual Internet.

Results

□Place Sandia In The Forefront of Large-scale Emulation

□ Developed Malware Prototype called the "Sandbot" based of the Sand Pile model from complexity theory.

☐Geographic Map of the Sandbot Network Activity

□Developed XPROC: A scalable means for remote execution

- ■Tree-Spawn execution
- ■Nodes help other nodes execute a process □ Exploit Virtual Machine properties
- □Limit unwanted network traffic through virtual block devices
- and VIRTIO console devices.

■Developed VMATIC: Virtual Machine provisioning tool

- □Configures and provisions virtual machines Runs on any machine that can boot Linux that is x86 or ARM based
- □Uses computational configuration to boot millions of nodes in minutes.

Significance

- □Gives researcher the ability to study malware in an Isolated Internet like environment.
- □A step toward emulation at 10⁷ scale and up (nation-state)
- □Demonstrated capabilities for use in Emulytics Roadmap
- □Team is connected to DOE Grassroots cyber security initiative □Identified complexity theory concepts (cascades, robustness)
- relevant to protection of cyber systems