Reimagining Liquid Transportation Fuels: Sunshine to Petrol

Sandia National Laboratories

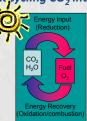
James E. Miller, Ellen B. Stechel, Andrea Ambrosini, Eric N. Coker, Gary L Kellogg, Randall J. Creighton, Mark D. Allendorf, Anthony H. McDaniel, Richard B. Diver, Nathan P. Siegel, Roy E. Hogan, Ken S. Chen, Daniel E. Dedrick, Terry A. Johnson, Chad L. Staiger

Problem

Enhancing Energy Security in an Age of Climate Change

U.S. Petroleum imports are roughly equivalent to that consumed by the transportation sector

 economic and strategic vulnerability
transfer of wealth · loss of opportunity


Significant resources will be

xpended even if we choose only to maintain the petroleum economy

Accounting for growth, about 14 TW of carbon-neutral energy will need to be brought online by 2050 to "stabilize" CO₂ levels Lewis and Nocera, PNAS 103(43) 15729 (2006).

Approach

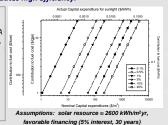
Recycling CO₂ into Fuel

Incorporating CO2 recycle into the Hydrogen Economy offers the benefits of the both the Hydrogen and Hydrocarbon

Applying solar energy directly to "re-energize" CO₂ and H₂O back into hydrocarbon form is analogous to photosynthetic processes, but potentially more efficient.

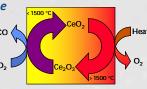
Capitalize on decades of Synfuel technology.

Sunlight + CO_2 + $H_2O \rightarrow CO + H_2 (+O_2) \rightarrow Fuel (+ <math>O_2$)

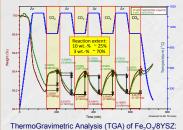

Focus on the critical energy intensive conversions: 4H₂O + energy → 4H₂ + 2O₂ (water splitting) $2CO_2$ + energy \rightarrow 2CO + O_2 (carbon dioxide splitting) 2CO₂ + 4H₂O + energy → 2CO + 4H₂ + 3O₂

> And integrating these into a efficient system red by a diffuse energy source

The magnitude of fuel consumption and the diffuse nature of the solar resource mandates high efficiency.



to Produce 20 mbpd at a given efficiency Sunlight to fuel efficiency assuming solar resource equivalent to Albuquerque – 2600 kWh/m²/yr. U.S. Petroleum consumption - 20 million bbls/day


Thermochemical Conversion is the Heart of the S2P concept

Conversion of heat directly into chemical work without intermediate conversion to electricity. Energy management is crucial to high efficiencies.

Results

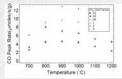
Materials are the heart ...

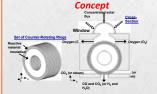
Thermal reduction under Ar; re-oxidation under CO₂

Characterize, Understand, Model, Improve

Fe/Zirconia Composites:

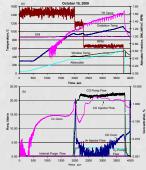
- Fe is highly mobile and soluble under reaction conditions
- · Reactions of dissolved Fe predominate in gas splitting $Fe^{3+} \leftrightarrow Fe^{2+}$


3% Fe₂O₃/8YSZ Homogeneous iron distribution

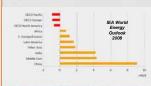

10% Fe₂O₃/8YSZ Accumulation of iron

Ceria has better kinetics at more favorable conditions boundaries

... of the Comprehensive Effort



Design and Modeling


Testing and Refinement

Systems and Economics

Significance

Energy security and climate change are defining issues for the nation, and the global community. Competition for energy resources is increasing and will continue to do so. The availability and price of transportation fuels is closely linked to our economic and national security. Creating a breakthrough technology for the production of carbon-neutral transportation fuels is a challenge that must be met.