! Theoretical Chemical Kinetics Database
! A small collection of first-principles rate constants calculated
! using the ab initio/transition state theory/master equation
! approach of Harding, Klippenstein, and Miller and presented in
! ChemKin format
!
! This version is here: http://www.sandia.gov/kinetics/db/v2013-1.html
!
! The latest version is here: http://www.sandia.gov/kinetics/db/
!
! Version 2013.2
! Last updated 6/28/2013
! A. W. Jasper and J. Zádor
! 3O + CO --> CO2
! A. W. Jasper and R. Dawes, J. Chem. Phys., submitted (2013)
! In other units: kinf = 2.8e-11*(T/298K)^-.96 exp(-4950K/T) cm3/s
! Updated 1/23/2014
! High pressure limit for T=1000-5000 K
! Units are cal, moles, s, K, cm
O+CO=CO2 4.00e15 -0.96 9836. ! high pressure limit
! H + fulvene → products
! A. W. Jasper and N. Hansen, Proc. Combust. Inst. 34, 279 (2013)
! Added 4/4/2013
! T = 500-2500 K, p = 1-10000 Torr, M = Kr
! Single Arrhenius fits are not very good, with mean unsigned fitting errors
! of as much as 25%. Errors at a particular T,p can be as high as 60%.
! Depending on the application, one may wish to generate more accurate
! fits over a more limited temperature range. The raw data is also given below.
! Units are cal, moles, s, K, cm
fulvene+H=methylcyclopentadienyl 0 0 0
PLOG / 0.001316 0.16756E+52 -11.4668 16725.4 / ! MUE fitting error = 14.02 %
PLOG / 0.013158 0.51940E+45 -9.3335 15121.0 / ! MUE fitting error = 17.68 %
PLOG / 0.131579 0.64261E+36 -6.5555 11932.9 / ! MUE fitting error = 21.78 %
PLOG / 1.000000 0.10369E+28 -3.8814 8292.5 / ! MUE fitting error = 21.21 %
PLOG / 1.315789 0.68938E+26 -3.5268 7779.3 / ! MUE fitting error = 20.69 %
PLOG / 13.157895 0.21401E+22 -2.0867 7022.7 / ! MUE fitting error = 9.69 %
fulvene+H=alpha-hydrofulvenyl 0 0 0
PLOG / 0.001316 0.23796E+69 -17.8950 17839.4 / ! MUE fitting error = 8.06 %
PLOG / 0.013158 0.46302E+69 -17.3511 20841.4 / ! MUE fitting error = 11.12 %
PLOG / 0.131579 0.23783E+63 -14.9309 21260.3 / ! MUE fitting error = 16.70 %
PLOG / 1.000000 0.67450E+52 -11.4343 18955.9 / ! MUE fitting error = 23.23 %
PLOG / 1.315789 0.13070E+51 -10.8878 18448.0 / ! MUE fitting error = 23.93 %
PLOG / 13.157895 0.11597E+41 -7.5932 16826.1 / ! MUE fitting error = 20.18 %
fulvene+H=beta-hydrofulvenyl 0 0 0
PLOG / 0.001316 0.65981E+66 -17.3901 17123.2 / ! MUE fitting error = 10.43 %
PLOG / 0.013158 0.45806E+66 -16.7004 19835.3 / ! MUE fitting error = 12.70 %
PLOG / 0.131579 0.83357E+58 -13.8617 19027.8 / ! MUE fitting error = 18.98 %
PLOG / 1.000000 0.94282E+46 -9.9758 15145.2 / ! MUE fitting error = 23.77 %
PLOG / 1.315789 0.19882E+45 -9.4403 14560.1 / ! MUE fitting error = 23.76 %
PLOG / 13.157895 0.53939E+60 -13.1428 33566.1 / ! MUE fitting error = 17.23 %
fulvene+H=benzene+H 0 0 0
PLOG / 0.001316 0.51326E+19 -1.2882 5426.2 / ! MUE fitting error = 4.75 %
PLOG / 0.013158 0.21875E+23 -2.2860 8438.1 / ! MUE fitting error = 1.21 %
PLOG / 0.131579 0.56179E+27 -3.4740 12823.4 / ! MUE fitting error = 1.84 %
PLOG / 1.000000 0.16735E+26 -2.9864 13699.2 / ! MUE fitting error = 13.63 %
PLOG / 1.315789 0.48548E+26 -3.1111 14219.9 / ! MUE fitting error = 10.09 %
PLOG / 13.157895 0.20642E+28 -3.4718 19189.0 / ! MUE fitting error = 6.61 %
! Calculated data
! Units for k: cm3/molecule.s
! mcp: methylcyclopentadienyl
! ahf: alpha-hydrofulvenyl
! bhf: beta-hydrofulvenyl
! P(Torr) T(K) mcp ahf bhf h+benzene
! 1 500 1.716E-11 3.478E-12 4.613E-13 1.274E-11
! 1 700 2.840E-11 1.124E-12 1.452E-13 3.491E-11
! 1 900 3.230E-11 2.290E-13 2.777E-14 5.981E-11
! 1 1100 2.240E-11 4.156E-14 5.341E-15 8.445E-11
! 1 1300 1.030E-11 7.849E-15 1.079E-15 1.050E-10
! 1 1500 3.990E-12 1.588E-15 2.310E-16 1.188E-10
! 1 1700 1.590E-12 3.454E-16 5.245E-17 1.255E-10
! 1 1900 7.090E-13 8.041E-17 1.260E-17 1.264E-10
! 1 2100 3.570E-13 1.993E-17 3.178E-18 1.232E-10
! 1 2300 2.000E-13 5.252E-18 8.321E-19 1.176E-10
! 1 2500 1.230E-13 1.485E-18 2.373E-19 1.110E-10
! 10 500 1.716E-11 1.007E-11 1.573E-12 5.043E-12
! 10 700 2.930E-11 8.258E-12 1.233E-12 2.673E-11
! 10 900 4.000E-11 3.258E-12 4.541E-13 5.641E-11
! 10 1100 4.050E-11 9.307E-13 1.349E-13 8.348E-11
! 10 1300 2.840E-11 2.421E-13 3.754E-14 1.048E-10
! 10 1500 1.520E-11 6.224E-14 1.026E-14 1.188E-10
! 10 1700 7.420E-12 1.628E-14 2.818E-15 1.255E-10
! 10 1900 3.730E-12 4.385E-15 7.888E-16 1.264E-10
! 10 2100 2.030E-12 1.221E-15 2.260E-16 1.232E-10
! 10 2300 1.200E-12 3.523E-16 6.640E-17 1.176E-10
! 10 2500 7.620E-13 1.064E-16 2.011E-17 1.110E-10
! 100 500 1.716E-11 1.247E-11 3.232E-12 1.001E-12
! 100 700 2.940E-11 2.113E-11 4.046E-12 1.117E-11
! 100 900 4.240E-11 1.760E-11 2.978E-12 3.988E-11
! 100 1100 5.260E-11 9.250E-12 1.558E-12 7.413E-11
! 100 1300 5.240E-11 3.852E-12 6.861E-13 1.008E-10
! 100 1500 4.060E-11 1.440E-12 2.730E-13 1.173E-10
! 100 1700 2.620E-11 5.124E-13 1.026E-13 1.251E-10
! 100 1900 1.580E-11 1.789E-13 3.741E-14 1.262E-10
! 100 2100 9.630E-12 6.234E-14 1.348E-14 1.231E-10
! 100 2300 6.130E-12 2.188E-14 4.850E-15 1.176E-10
! 100 2500 4.120E-12 7.801E-15 1.754E-15 1.110E-10
! 760 500 1.716E-11 1.058E-11 5.822E-12 3.043E-13
! 760 700 2.910E-11 2.517E-11 8.202E-12 3.107E-12
! 760 900 4.280E-11 3.487E-11 8.282E-12 1.811E-11
! 760 1100 5.610E-11 3.253E-11 6.646E-12 4.747E-11
! 760 1300 6.620E-11 2.186E-11 4.518E-12 8.096E-11
! 760 1500 6.690E-11 1.219E-11 2.654E-12 1.058E-10
! 760 1700 5.700E-11 6.086E-12 1.398E-12 1.193E-10
! 760 1900 4.280E-11 2.842E-12 6.835E-13 1.236E-10
! 760 2100 3.040E-11 1.276E-12 3.185E-13 1.220E-10
! 760 2300 2.150E-11 5.613E-13 1.441E-13 1.171E-10
! 760 2500 1.550E-11 2.448E-13 6.409E-14 1.108E-10
! 1000 500 1.716E-11 1.029E-11 6.130E-12 2.227E-13
! 1000 700 2.910E-11 2.495E-11 8.936E-12 3.384E-12
! 1000 900 4.280E-11 3.664E-11 9.204E-12 1.556E-11
! 1000 1100 5.630E-11 3.643E-11 7.710E-12 4.290E-11
! 1000 1300 6.720E-11 2.610E-11 5.526E-12 7.630E-11
! 1000 1500 6.980E-11 1.540E-11 3.421E-12 1.024E-10
! 1000 1700 6.150E-11 8.071E-12 1.890E-12 1.173E-10
! 1000 1900 4.770E-11 3.932E-12 9.638E-13 1.225E-10
! 1000 2100 3.480E-11 1.832E-12 4.661E-13 1.214E-10
! 1000 2300 2.500E-11 8.324E-13 2.179E-13 1.169E-10
! 1000 2500 1.830E-11 3.738E-13 9.985E-14 1.107E-10
! 10000 700 2.910E-11 3.466E-11 8.731E-13 4.999E-13
! 10000 900 4.280E-11 3.921E-11 1.898E-11 3.725E-12
! 10000 1100 5.690E-11 5.611E-11 1.975E-11 1.363E-11
! 10000 1300 7.110E-11 6.699E-11 1.896E-11 3.054E-11
! 10000 1500 8.380E-11 6.200E-11 1.695E-11 5.468E-11
! 10000 1700 9.140E-11 4.889E-11 1.364E-11 7.781E-11
! 10000 1900 9.080E-11 3.430E-11 9.896E-12 9.459E-11
! 10000 2100 8.290E-11 2.211E-11 6.594E-12 1.036E-10
! 10000 2300 7.130E-11 1.342E-11 4.116E-12 1.063E-10
! 10000 2500 5.960E-11 7.807E-12 2.448E-12 1.048E-10
! H + CH2CHCH2 → H2 + CH2CCH2
! A. W. Jasper, unpublished (2012).
! Added 4/4/2013
! This unpublished calculation was carried out using methods similar to those used for the H + fulvene addition reactions
! described in "Hydrogen-assisted isomerizations of fulvene to benzene and of larger cyclic aromatic hydrocarbons,"
! A. W. Jasper and N. Hansen, Proc. Combust. Inst. 34, 279 (2013). Specifically, we used Polyrate, the VTST/SCT method
! with curvilinear coordinates, and an M06-2X/aug-cc-pVDZ potential energy surface corrected to reproduce L. B. Harding's
! (4e,4o) MRCI+Q/aug-cc-pVDZ barrier height (Harding, private communication, 2012).
! This is a direct abstraction reaction. This reaction competes with capture reactions, which give different products.
! Units are cal, moles, s, K, cm
H+CH2CHCH2=CH2CCH2+H2 0.25653E+07 2.1245 6135.5 ! 500-3000 K, MUE fitting = 2%
! 3CH2 + OH → products
! A. W. Jasper, S. J. Klippenstein, and L. B. Harding, J. Phys. Chem. A 111, 8699 (2007)
! Added 11/8/2011
! Units are cal, moles, s, K, cm
CH2(T)+OH=CH2O+H 2.856E+13 0.1228 -161.8 ! capture rate
CH2(T)+OH=CH+H2O 8.629E+05 2.019 6776. ! abstraction to 4CH + H2O
! 3CH2 + 3CH2 → products
! A. W. Jasper, S. J. Klippenstein, and L. B. Harding, J. Phys. Chem. A 111, 8699 (2007)
! Added 11/8/2011
! Units are cal, moles, s, K, cm
CH2(T)+CH2(T)=C2H3+H 7.094E+13 0.0022 8.862 ! 80% C2H3+H products (C2H3 quickly decays to C2H2+H)
CH2(T)+CH2(T)=C2H2+H2 1.773E+13 0.0022 8.862 ! 20% C2H2+H2 products
! 3CH2 + CH3 → C2H4 + H
! A. W. Jasper, S. J. Klippenstein, and L. B. Harding, J. Phys. Chem. A 111, 8699 (2007)
! Added 11/8/2011
! Units are cal, moles, s, K, cm
CH2(T)+CH3=C2H4+H 1.200E+15 -0.3432 153.1 ! capture rate
! CH3 + H → CH4
! High P limit from Harding, Georgievskii, Klippenstein, JPCA 109, 4646 (2005)
! Falloff in Ar (alpha=115*(T/300)^.75) from trajectories of A. W. Jasper and J. A. Miller, J. Phys. Chem. A 115, 6438 (2011).
! Very good agreement with the empirical alpha of J. A. Miller, S. J. Klippenstein and C. Raffy, J. Phys. Chem. A 106, 4904 (2002)
! 500-3000 K, 1-10^5 Torr, 9% mean unsigned fitting error
! Added 11/8/2011
! Units are cal, moles, s, K, cm
CH3+H=CH4 6.925e13 0.18 0. ! kinf
LOW / 3.799e39 -6.564 6744. / ! k0
TROE / 0.7 456.1 10063. / ! Fcent
! CH3 + CH3 → C2H6
! Kiefer, Santhanam, Srinivasan, Tranter, Klippenstein, Oehlschlaeger, Proc. Combust. Inst. 30, 1129 (2005)
! X. Yang, A. W. Jasper, J. H. Kiefer and R. S. Tranter, J. Phys. Chem. A 113, 8318 (2009).
! The newer paper has lower-T (1200-1500 K) experimental data than the older paper (> 1500 K).
! The ME parameters (alpha) obtained in the first study were re-optimized in the 2nd study to fit data from both papers.
! 500-3000 K, 1-10^5 Torr, 7% mean unsigned fitting error
! total capture rate
! Added 11/8/2011
! Units are cal, moles, s, K, cm
CH3+CH3=C2H6 8.878e16 -1.160 774.5 ! kinf
LOW / 3.741e50 -9.930 7389. / ! k0
TROE / 0.7548 158.0 32828. 46564. / ! Fcent
! CH3 + HO2 → products
! A. W. Jasper, S. J. Klippenstein and L. B. Harding, Proc. Combust. Inst. 32, 279 (2009)
! See also: M. Sangwan and L. N. Krasnoperov, J. Phys. Chem. A, in press (2013).
! The measured rate of Sangwand and Krasnoperov agrees well with the theory.
!
! Total capture rate; no other products via capture.
! Note: other products (CH3OOH and CH2O+H2O) are formed via the reverse reaction.
! Units are cal, moles, s, K, cm
CH3+HO2=CH3O+OH 9.999E+11 0.2688 -687.5
! Srinivasan, Michael, Harding, Klippenstein, Combust. Flame 149, 104 (2007)
! Abstraction on triplet surface
! Units are cal, moles, s, K, cm
CH3+HO2=CH4+O2(T) 1.189E+05 2.228 -3022.
! CH3 + OH, CH3OH → products
! A. W. Jasper, S. J. Klippenstein, L. B. Harding and B. Ruscic, J. Phys. Chem. A 111, 3932 (2007)
! Dummy params for the bimolecular products are the high pressure limits for the reverse reactions
! Added 11/8/2011
! Units are cal, moles, s, K, cm
CH3+OH=CH2(T)+H2O 4.303e4 2.568 3997. ! 300-3000 K abstraction on the triplet surface
CH3+OH=CH3OH 6.196e13 -0.01761 -33.26 ! 100-4000 K high P limit for CH3+OH total capture
PLOG / 0.001316 0.6929E+31 -6.63794 2828.60141/ ! fitting MUE = 13.04% 300-2000 K
PLOG / 0.013158 0.1051E+33 -6.63695 3364.22202/ ! fitting MUE = 12.03%
PLOG / 0.131579 0.1492E+33 -6.36057 3953.92767/ ! fitting MUE = 12.00%
PLOG / 1.315789 0.5690E+31 -5.64842 4213.61455/ ! fitting MUE = 12.67%
PLOG / 13.157895 0.1379E+28 -4.33275 3684.75226/ ! fitting MUE = 14.13%
PLOG / 131.578947 0.1304E+23 -2.66369 2451.05746/ ! fitting MUE = 13.23%
CH3+OH=CH2(S)+H2O 0. 0. 0. ! reverse reaction fit to two arrenhius expressions: 8.407e9 0.8750 1428 3.915e19 -2.182 325.1
PLOG / 0.001316 0.1132E+15 -0.45845 -496.28352/ ! fitting MUE = 8.57% 300-3000 K
PLOG / 0.013158 0.2234E+15 -0.53832 -220.35580/ ! fitting MUE = 8.93%
PLOG / 0.131579 0.1160E+16 -0.72747 600.46175/ ! fitting MUE = 8.94%
PLOG / 1.315789 0.4283E+16 -0.85972 1887.52759/ ! fitting MUE = 6.35%
PLOG / 13.157895 0.4385E+15 -0.53864 2931.69892/ ! fitting MUE = 3.83%
PLOG / 131.578947 0.6091E+11 0.59560 2922.77103/ ! fitting MUE = 14.98%
CH3+OH=H2+CH2CO 1.376 0. 69704 ! < 2% of complexation products
PLOG / 0.001316 0.3887E+10 0.25392 -1220.66461/ ! fitting MUE = 9.93% 300-3000 K
PLOG / 0.013158 0.1988E+11 0.06025 -624.42912/ ! fitting MUE = 9.27%
PLOG / 0.131579 0.2815E+12 -0.24957 498.30850/ ! fitting MUE = 8.34%
PLOG / 1.315789 0.3555E+13 -0.53245 2042.26529/ ! fitting MUE = 8.90%
PLOG / 13.157895 0.2192E+13 -0.43166 3415.37613/ ! fitting MUE = 15.99%
PLOG / 131.578947 0.2360E+10 0.45344 3790.96644/ ! fitting MUE = 30.14%
CH3+OH=H+CH2OH 1.371e14 0.04166 0.
PLOG / 0.001316 0.8442E+10 0.96279 3230.39260/ ! fitting MUE = 1.54% 300-3000 K
PLOG / 0.013158 0.8442E+10 0.96279 3230.39260/ ! fitting MUE = 1.54%
PLOG / 0.131579 0.1006E+11 0.94201 3295.03597/ ! fitting MUE = 1.43%
PLOG / 1.315789 0.5601E+11 0.73966 3970.98753/ ! fitting MUE = 0.90%
PLOG / 13.157895 0.5531E+12 0.48620 5443.47750/ ! fitting MUE = 2.54%
PLOG / 131.578947 0.2525E+11 0.90920 6402.10664/ ! fitting MUE = 13.15%
CH3+OH=H+CH3O 2.446e13 0.2397 -51.88 ! < 4% of complexation products
PLOG / 0.001316 0.7893E+09 1.06509 11858.54118/ ! fitting MUE = 1.43% 300-3000 K
PLOG / 0.013158 0.7893E+09 1.06509 11858.54118/ ! fitting MUE = 1.43%
PLOG / 0.131579 0.7893E+09 1.06509 11858.54118/ ! fitting MUE = 1.43%
PLOG / 1.315789 0.7926E+09 1.06457 11858.98728/ ! fitting MUE = 1.45%
PLOG / 13.157895 0.1029E+10 1.03413 11969.76311/ ! fitting MUE = 1.40%
PLOG / 131.578947 0.3073E+10 0.92189 12980.53944/ ! fitting MUE = 1.58%
! cis and trans products are combined as HCOH
CH3+OH=H2+HCOH 0 0 0 ! High P limit for H2+HCOH: 4.523e4 2.27 8196 (cis) 2.460e3 2.621 8896 (trans)
PLOG / 0.001316 0.1210E+10 0.83024 -2322.50465/ ! fitting MUE = 7.32%
PLOG / 0.013158 0.6397E+10 0.63305 -1700.88946/ ! fitting MUE = 8.39%
PLOG / 0.131579 0.8000E+11 0.33964 -564.56896/ ! fitting MUE = 8.76%
PLOG / 1.315789 0.6533E+12 0.11155 931.90948/ ! fitting MUE = 6.10%
PLOG / 13.157895 0.2064E+12 0.29509 2199.79028/ ! fitting MUE = 3.83%
PLOG / 131.578947 0.9402E+08 1.28631 2423.76090/ ! fitting MUE = 16.57%
CH3OH=CH2(S)+H2O 0 0 0
PLOG / 0.001316 0.2088E+44 -9.59173 100241.81077/ ! fitting MUE = 9.80% 500-3000 K
PLOG / 0.013158 0.1131E+46 -9.77408 100605.59358/ ! fitting MUE = 9.63%
PLOG / 0.131579 0.3499E+46 -9.66093 101109.95886/ ! fitting MUE = 9.86%
PLOG / 1.315789 0.7811E+45 -9.25261 101542.76106/ ! fitting MUE = 10.66%
PLOG / 13.157895 0.2257E+43 -8.32194 101305.59169/ ! fitting MUE = 12.50%
PLOG / 131.578947 0.2854E+38 -6.74139 99833.36496/ ! fitting MUE = 14.31%
! cis-HCOH
!CH3+OH=H2+cHCOH 4.523e4 2.27 8196 ! < 5% of complexataion products
!PLOG / 0.001316 0.6383E+07 1.37956 -2106.55526/ ! fitting MUE = 4.13% 300-3000 K
!PLOG / 0.013158 0.3035E+08 1.19408 -1551.28294/ ! fitting MUE = 5.47%
!PLOG / 0.131579 0.4121E+09 0.88764 -494.64681/ ! fitting MUE = 6.64%
!PLOG / 1.315789 0.6736E+10 0.57140 1048.02074/ ! fitting MUE = 5.26%
!PLOG / 13.157895 0.6598E+10 0.61452 2481.48835/ ! fitting MUE = 3.57%
!PLOG / 131.578947 0.1028E+08 1.45500 2922.16687/ ! fitting MUE = 16.18%
! trans-HCOH
!CH3+OH=H2+tHCOH 2.460e3 2.621 8896
!PLOG / 0.001316 0.7755E+10 0.53876 -2153.14013/ ! fitting MUE = 7.47% 300-3000 K
!PLOG / 0.013158 0.3943E+11 0.34661 -1532.30738/ ! fitting MUE = 8.40%
!PLOG / 0.131579 0.4815E+12 0.05636 -389.03707/ ! fitting MUE = 8.72%
!PLOG / 1.315789 0.3171E+13 -0.14485 1079.28060/ ! fitting MUE = 5.91%
!PLOG / 13.157895 0.6855E+12 0.08531 2283.31127/ ! fitting MUE = 4.09%
!PLOG / 131.578947 0.2064E+09 1.12685 2428.55798/ ! fitting MUE = 16.63%
! propene + OH
! J. Zador, A. W. Jasper, and J. A. Miller, Phys. Chem. Chem. Phys. 11, 11409, (2009).
! Added 11/8/2011
! Units are cal, molecule, s, K, cm
! Calculted rates were fit to a double Arrhenius expression
! k = A (T/T0)^B exp(-C/(RT)) + D (T/T0)^E exp(-F/(RT))
! T0 = 1 K
! R = 1.987 cal / mol / K
! *************
! ABSTRACTION *
! *************
! allyl
! -----
c3h6 + oh = allyl + h2o -2.07e-16 1.73 925
dup
c3h6 + oh = allyl + h2o 3.12e-17 2.03 684
! propen-1-yl
! -----------
c3h6 + oh = propen-1-yl + h2o 1.26e-20 2.80 2193
dup
c3h6 + oh = propen-1-yl + h2o 1.68e-24 3.51 -101
dup
! propen-2-yl
! -----------
c3h6 + oh = propen-2-yl + h2o 7.76e-20 2.47 1748
dup
c3h6 + oh = propen-2-yl + h2o 9.50e-31 2.61 -3086
dup
! *********************************************************************************************************
! ADDITION *
! The following sets of expressions are valid for 50-500 K and 500-3000 K, respectively. *
! *
! NOTE: To accurately calculate back dissociation, the theoretical equilibrium constants should be used. *
! They are given here, fit to a double Arrhenius expression with the same units as the rate coefficients. *
! Keq terminal C 7.36e-25 -0.30 -27414 5.20e-30 1.43 -28013 *
! Keq central C 1.02e-23 -1.10 -28390 2.17e-30 1.49 -28888 *
! *********************************************************************************************************
! 50-500 K
! --------
c3h6 + oh = c3h7o 3.81E+04 -5.77 1683
PLOG/ 0.0013 3.81E+04 -5.77 1683/
PLOG/ 0.01 3.14E+53 -22.2 13751/
PLOG/ 0.013 1.46E+58 -23.7 15265/
PLOG/ 0.025 3.37E-04 -2.82 263/
PLOG/ 0.1 2.96E+30 -16.59 3552/
PLOG/ 0.1315 1.07E+23 -13.62 2834/
PLOG/ 1 2.62E+07 -7.311 1324/
PLOG/ 10 7.82E+04 -6.28 1079/
PLOG/ 100 7.82E+04 -6.28 1079/
dup
c3h6 + oh = c3h7o 9.55E+00 -4.81 511
PLOG/ 0.0013 9.55E+00 -4.81 511/
PLOG/ 0.01 1.10E-03 -3.04 298/
PLOG/ 0.013 6.74E-04 -2.95 283/
PLOG/ 0.025 2.55E+44 -18.83 13105/
PLOG/ 0.1 5.68E-06 -2.13 127/
PLOG/ 0.1315 3.15E-06 -2.03 106/
PLOG/ 1 9.26E-08 -1.47 -20/
PLOG/ 10 2.33E-08 -1.25 -68/
PLOG/ 100 2.33E-08 -1.25 -68/
dup
! 500-3000 K
! ----------
c3h6 + oh = c3h7o 5.10E+54 -20.7 32402
PLOG/ 0.0013 5.10E+54 -20.7 32402/
PLOG/ 0.01 6.06E+53 -20 33874/
PLOG/ 0.013 2.35E+52 -19.58 32874/
PLOG/ 0.025 8.14E+49 -18.79 31361/
PLOG/ 0.1 2.29E+44 -17.01 27909/
PLOG/ 0.1315 1.60E+43 -16.64 27162/
PLOG/ 1 4.31E+35 -14.17 23079/
PLOG/ 10 1.67E+30 -12.23 22976/
PLOG/ 100 3.18E+24 -10.23 23772/
dup
c3h6 + oh = c3h7o 1.42E+36 -15.84 11594
PLOG/ 0.0013 1.42E+36 -15.84 11594/
PLOG/ 0.01 1.61E+36 -15.51 12898/
PLOG/ 0.013 6.17E+35 -15.34 12913/
PLOG/ 0.025 5.87E+34 -14.93 12936/
PLOG/ 0.1 2.99E+32 -14.04 12945/
PLOG/ 0.1315 8.82E+31 -13.85 12887/
PLOG/ 1 3.43E+26 -12.04 11493/
PLOG/ 10 1.42E+18 -9.35 8921/
PLOG/ 100 5.08E+08 -6.31 6088/
dup
! **********************************************************************************************
! BIMOLECULAR *
! The total rate for all propene + OH bimolecular products, except abstraction, is given next. *
! The abstraction rate is given above. *
! **********************************************************************************************
c3h6 + oh = products 3.51E-18 1.98 2439
PLOG/ 0 3.51E-18 1.98 2439/
PLOG/ 0.0013 -8.17E-16 1.18 1060/
PLOG/ 0.01 3.54E-18 1.98 2477/
PLOG/ 0.013 4.95E-18 1.94 2581/
PLOG/ 0.025 1.45E-17 1.81 2926/
PLOG/ 0.1 6.70E-16 1.36 4252/
PLOG/ 0.1315 3.26E-15 1.16 4707/
PLOG/ 1 4.92E-11 0 8132/
PLOG/ 10 3.61E-08 -0.73 12175/
PLOG/ 100 7.50E-04 -1.83 18784/
dup
c3h6 + oh = products 4.49E-10 -1.73 -214
PLOG/ 0 4.49E-10 -1.73 -214/
PLOG/ 0.0013 3.68E-18 1.99 484/
PLOG/ 0.01 1.46E-20 1.97 -526/
PLOG/ 0.013 1.15E-21 2.32 -683/
PLOG/ 0.025 5.07E-21 1.97 -589/
PLOG/ 0.1 4.17E-25 3.34 -930/
PLOG/ 0.1315 4.91E-28 4.44 -1217/
PLOG/ 1 1.46E-28 4.76 -223/
PLOG/ 10 7.36E-29 4.81 612/
PLOG/ 100 1.12E-26 4.25 3044/
dup
! ************************************************
! BIMOLECULAR channel specific rate coefficients *
! ************************************************
! allyl alcohol
! -------------
c3h6 + oh = allyl alcohol + h
PLOG/ 0 -1.31E-09 -4.50E-01 10996/
PLOG/ 0.0013 -1.74E-09 -4.90E-01 11043/
PLOG/ 0.01 -1.75E-09 -4.90E-01 11053/
PLOG/ 0.013 -1.77E-09 -4.90E-01 11060/
PLOG/ 0.025 -1.09E-08 -7.00E-01 11615/
PLOG/ 0.1 -1.04E-08 -6.60E-01 11794/
PLOG/ 0.1315 -8.36E-09 -6.20E-01 11782/
PLOG/ 1 1.34E-07 -1 15339/
PLOG/ 10 2.07E-01 -2.68 20993/
PLOG/ 100 3.45E+01 -3.16 26266/
dup
c3h6 + oh = allyl alcohol + h
PLOG/ 0 3.80E-11 0.07 10580/
PLOG/ 0.0013 4.43E-11 0.05 10611/
PLOG/ 0.01 4.57E-11 0.05 10623/
PLOG/ 0.013 4.77E-11 0.04 10634/
PLOG/ 0.025 2.64E-10 -0.16 11125/
PLOG/ 0.1 5.14E-10 -0.22 11407/
PLOG/ 0.1315 6.27E-10 -0.24 11458/
PLOG/ 1 1.52E-16 1.42 10087/
PLOG/ 10 6.07E-19 2.14 10410/
PLOG/ 100 1.36E-21 2.84 10481/
dup
! vinyl alcohol
! -------------
c3h6 + oh = vinyl alcohol + ch3 4.06E-17 1.55 2310
PLOG/ 0 4.06E-17 1.55 2310/
PLOG/ 0.0013 1.11E-16 1.42 2708/
PLOG/ 0.01 6.24E-16 1.21 3068/
PLOG/ 0.013 2.00E-15 1.06 3326/
PLOG/ 0.025 2.70E-14 0.72 3950/
PLOG/ 0.1 3.47E-12 0.13 5407/
PLOG/ 0.1315 8.52E-12 0.02 5723/
PLOG/ 1 1.45E-03 -2.35 11290/
PLOG/ 10 3.77E-26 4.03 1952/
PLOG/ 100 1.08E-01 -2.58 19256/
dup
c3h6 + oh = vinyl alcohol + ch3 2.16E-20 2.11 308
PLOG/ 0 2.16E-20 2.11 308/
PLOG/ 0.0013 2.14E-18 1.65 1233/
PLOG/ 0.01 3.03E-20 2.1 1162/
PLOG/ 0.013 3.39E-21 2.48 1128/
PLOG/ 0.025 4.78E-22 2.8 1152/
PLOG/ 0.1 2.32E-23 3.21 1208/
PLOG/ 0.1315 1.28E-23 3.29 1216/
PLOG/ 1 1.87E-20 2.5 3238/
PLOG/ 10 4.01E-05 -1.74 13107/
PLOG/ 100 5.48E-25 3.7 3665/
dup
! propen-1-ol
! -----------
c3h6 + oh = propen-1-ol + h 2.89E-14 0.69 6864
PLOG/ 0 2.89E-14 0.69 6864/
PLOG/ 0.0013 1.08E-13 0.53 7292/
PLOG/ 0.01 3.77E-14 0.66 6968/
PLOG/ 0.013 3.01E-14 0.69 6884/
PLOG/ 0.025 3.43E-14 0.68 6899/
PLOG/ 0.1 5.20E-13 0.36 7785/
PLOG/ 0.1315 1.21E-12 0.26 8071/
PLOG/ 1 4.83E-09 -0.74 11079/
PLOG/ 10 7.49E-05 -1.86 15763/
PLOG/ 100 6.29E-03 -2.3 20501/
dup
c3h6 + oh = propen-1-ol + h 2.92E-18 1.57 4133
PLOG/ 0 2.92E-18 1.57 4133/
PLOG/ 0.0013 5.77E-18 1.53 4288/
PLOG/ 0.01 1.79E-17 1.34 4576/
PLOG/ 0.013 1.62E-17 1.33 4589/
PLOG/ 0.025 8.53E-18 1.36 4594/
PLOG/ 0.1 5.20E-19 1.69 4603/
PLOG/ 0.1315 2.31E-19 1.8 4603/
PLOG/ 1 1.71E-22 2.83 4530/
PLOG/ 10 5.65E-26 3.89 4390/
PLOG/ 100 7.40E-30 5.03 4132/
dup
! propen-2-ol
! -----------
c3h6 + oh = propen-2-ol + h 8.52E-21 2.42 2447
PLOG/ 0 8.52E-21 2.42 2447/
PLOG/ 0.0013 1.55E-20 2.35 2635/
PLOG/ 0.01 6.77E-20 2.17 3048/
PLOG/ 0.013 1.07E-19 2.11 3186/
PLOG/ 0.025 4.26E-19 1.94 3598/
PLOG/ 0.1 2.51E-17 1.44 4816/
PLOG/ 0.1315 5.44E-17 1.35 5084/
PLOG/ 1 2.58E-14 0.62 7544/
PLOG/ 10 2.45E-29 4.75 2168/
PLOG/ 100 6.40E-05 -1.85 19219/
dup
c3h6 + oh = propen-2-ol + h 7.30E-27 3.67 -518
PLOG/ 0 7.30E-27 3.67 -518/
PLOG/ 0.0013 4.76E-24 2.92 625/
PLOG/ 0.01 8.03E-25 2.98 704/
PLOG/ 0.013 5.19E-25 3.04 721/
PLOG/ 0.025 1.55E-26 3.62 677/
PLOG/ 0.1 7.70E-29 4.48 687/
PLOG/ 0.1315 4.50E-29 4.56 707/
PLOG/ 1 1.27E-30 5.05 874/
PLOG/ 10 4.38E-09 -0.8 12728/
PLOG/ 100 8.08E-28 4.32 4020/
dup
! acetaldehyde
! ------------
c3h6 + oh = acetaldehyde + ch3 1.48E-02 -4.56 464
PLOG/ 0 1.48E-02 -4.56 464/
PLOG/ 0.0013 -7.37E-17 0.89 540/
PLOG/ 0.01 3.11E-05 -2.96 4951/
PLOG/ 0.013 4.33E-09 -1.67 3823/
PLOG/ 0.025 5.49E-10 -1.29 3996/
PLOG/ 0.1 1.57E-09 -1.3 5272/
PLOG/ 0.1315 2.67E-09 -1.35 5603/
PLOG/ 1 8.58E-08 -1.67 8264/
PLOG/ 10 8.52E-06 -2.11 12359/
PLOG/ 100 1.23E-04 -2.29 17262/
dup
c3h6 + oh = acetaldehyde + ch3 1.27E-21 2.24 -1676
PLOG/ 0 1.27E-21 2.24 -1676/
PLOG/ 0.0013 1.15E-18 1.49 -536/
PLOG/ 0.01 9.86E-21 2.01 -560/
PLOG/ 0.013 1.83E-21 2.22 -680/
PLOG/ 0.025 1.77E-22 2.5 -759/
PLOG/ 0.1 1.30E-24 3.1 -919/
PLOG/ 0.1315 5.09E-25 3.22 -946/
PLOG/ 1 5.24E-28 4.05 -1144/
PLOG/ 10 1.26E-29 4.49 -680/
PLOG/ 100 9.05E-29 4.22 1141/
dup
!CRF theoretical chemical kinetics database version history
! Date Version Notes
! 1/23/14 2013.2 Fixed a typo in the O+CO high pressure limit
!
! 4/4/13 2013.1 Added H+allyl abstraction rate coefficient
! Added H+fulvene(+Kr)
!
! 3/6/13 2013 Added CH3OH --> CH2(S)+H2O
!
! 9/29/12 2011.1.1 Corrected an error in the low-P limits for CH3+H and CH3+CH3.
! Corrected an error in the signs of the activation energies for the CH3+HO2 reactions.
! Thanks to Xueliang Yang for identifying these errors.
!
! 11/8/11 2011.1 This first version includes
! CH2 + OH
! CH2 + CH2
! CH2 + CH3
! CH3 + H
! CH3 + CH3
! CH3 + HO2
! CH3 + OH
! propene + OH